Deep Learning for Understanding Satellite Imagery: An Experimental Survey

Mohanty SP, Czakon J, Kaczmarek KA, Pyskir A, Tarasiewicz P, Kunwar S, Rohrbach J, Luo D, Prasad M, Fleer S, Göpfert JP, et al. (2020)
Frontiers in Artificial Intelligence 3: 534696.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 4.93 MB
Autor*in
Mohanty, Sharada Prasanna; Czakon, Jakub; Kaczmarek, Kamil A.; Pyskir, Andrzej; Tarasiewicz, Piotr; Kunwar, Saket; Rohrbach, Janick; Luo, Dave; Prasad, Manjunath; Fleer, SaschaUniBi ; Göpfert, Jan PhilipUniBi ; Tandon, AkshatUniBi
Alle
Abstract / Bemerkung
Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward automated satellite image translation. To facilitate research in this direction, we introduce the Satellite Imagery Competition using a modified SpaceNet dataset. Participants had to come up with different segmentation models to detect positions of buildings on satellite images. In this work, we present five approaches based on improvements of U-Net and Mask R-Convolutional Neuronal Networks models, coupled with unique training adaptations using boosting algorithms, morphological filter, Conditional Random Fields and custom losses. The good results—as high as AP=0.937 and AR=0.959—from these models demonstrate the feasibility of Deep Learning in automated satellite image annotation.
Erscheinungsjahr
2020
Zeitschriftentitel
Frontiers in Artificial Intelligence
Band
3
Art.-Nr.
534696
eISSN
2624-8212
Page URI
https://pub.uni-bielefeld.de/record/2949926

Zitieren

Mohanty SP, Czakon J, Kaczmarek KA, et al. Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence. 2020;3: 534696.
Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A., Tarasiewicz, P., Kunwar, S., Rohrbach, J., et al. (2020). Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence, 3, 534696. https://doi.org/10.3389/frai.2020.534696
Mohanty, Sharada Prasanna, Czakon, Jakub, Kaczmarek, Kamil A., Pyskir, Andrzej, Tarasiewicz, Piotr, Kunwar, Saket, Rohrbach, Janick, et al. 2020. “Deep Learning for Understanding Satellite Imagery: An Experimental Survey”. Frontiers in Artificial Intelligence 3: 534696.
Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A., Tarasiewicz, P., Kunwar, S., Rohrbach, J., Luo, D., Prasad, M., Fleer, S., et al. (2020). Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence 3:534696.
Mohanty, S.P., et al., 2020. Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence, 3: 534696.
S.P. Mohanty, et al., “Deep Learning for Understanding Satellite Imagery: An Experimental Survey”, Frontiers in Artificial Intelligence, vol. 3, 2020, : 534696.
Mohanty, S.P., Czakon, J., Kaczmarek, K.A., Pyskir, A., Tarasiewicz, P., Kunwar, S., Rohrbach, J., Luo, D., Prasad, M., Fleer, S., Göpfert, J.P., Tandon, A., Mollard, G., Rayaprolu, N., Salathe, M., Schilling, M.: Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence. 3, : 534696 (2020).
Mohanty, Sharada Prasanna, Czakon, Jakub, Kaczmarek, Kamil A., Pyskir, Andrzej, Tarasiewicz, Piotr, Kunwar, Saket, Rohrbach, Janick, Luo, Dave, Prasad, Manjunath, Fleer, Sascha, Göpfert, Jan Philip, Tandon, Akshat, Mollard, Guillaume, Rayaprolu, Nikhil, Salathe, Marcel, and Schilling, Malte. “Deep Learning for Understanding Satellite Imagery: An Experimental Survey”. Frontiers in Artificial Intelligence 3 (2020): 534696.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2021-02-19T16:07:32Z
MD5 Prüfsumme
655bd30e18bbbc7d395f4eb25352762a


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 33733198
PubMed | Europe PMC

Suchen in

Google Scholar