Deep Learning for Understanding Satellite Imagery: An Experimental Survey
Mohanty SP, Czakon J, Kaczmarek KA, Pyskir A, Tarasiewicz P, Kunwar S, Rohrbach J, Luo D, Prasad M, Fleer S, Göpfert JP, et al. (2020)
Frontiers in Artificial Intelligence 3: 534696.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
frai-03-534696.pdf
4.93 MB
Autor*in
Mohanty, Sharada Prasanna;
Czakon, Jakub;
Kaczmarek, Kamil A.;
Pyskir, Andrzej;
Tarasiewicz, Piotr;
Kunwar, Saket;
Rohrbach, Janick;
Luo, Dave;
Prasad, Manjunath;
Fleer, SaschaUniBi ;
Göpfert, Jan PhilipUniBi ;
Tandon, AkshatUniBi
Alle
Alle
Einrichtung
Abstract / Bemerkung
Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward automated satellite image translation. To facilitate research in this direction, we introduce the Satellite Imagery Competition using a modified SpaceNet dataset. Participants had to come up with different segmentation models to detect positions of buildings on satellite images. In this work, we present five approaches based on improvements of U-Net and Mask R-Convolutional Neuronal Networks models, coupled with unique training adaptations using boosting algorithms, morphological filter, Conditional Random Fields and custom losses. The good results—as high as AP=0.937 and AR=0.959—from these models demonstrate the feasibility of Deep Learning in automated satellite image annotation.
Erscheinungsjahr
2020
Zeitschriftentitel
Frontiers in Artificial Intelligence
Band
3
Art.-Nr.
534696
Urheberrecht / Lizenzen
eISSN
2624-8212
Page URI
https://pub.uni-bielefeld.de/record/2949926
Zitieren
Mohanty SP, Czakon J, Kaczmarek KA, et al. Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence. 2020;3: 534696.
Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A., Tarasiewicz, P., Kunwar, S., Rohrbach, J., et al. (2020). Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence, 3, 534696. https://doi.org/10.3389/frai.2020.534696
Mohanty, Sharada Prasanna, Czakon, Jakub, Kaczmarek, Kamil A., Pyskir, Andrzej, Tarasiewicz, Piotr, Kunwar, Saket, Rohrbach, Janick, et al. 2020. “Deep Learning for Understanding Satellite Imagery: An Experimental Survey”. Frontiers in Artificial Intelligence 3: 534696.
Mohanty, S. P., Czakon, J., Kaczmarek, K. A., Pyskir, A., Tarasiewicz, P., Kunwar, S., Rohrbach, J., Luo, D., Prasad, M., Fleer, S., et al. (2020). Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence 3:534696.
Mohanty, S.P., et al., 2020. Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence, 3: 534696.
S.P. Mohanty, et al., “Deep Learning for Understanding Satellite Imagery: An Experimental Survey”, Frontiers in Artificial Intelligence, vol. 3, 2020, : 534696.
Mohanty, S.P., Czakon, J., Kaczmarek, K.A., Pyskir, A., Tarasiewicz, P., Kunwar, S., Rohrbach, J., Luo, D., Prasad, M., Fleer, S., Göpfert, J.P., Tandon, A., Mollard, G., Rayaprolu, N., Salathe, M., Schilling, M.: Deep Learning for Understanding Satellite Imagery: An Experimental Survey. Frontiers in Artificial Intelligence. 3, : 534696 (2020).
Mohanty, Sharada Prasanna, Czakon, Jakub, Kaczmarek, Kamil A., Pyskir, Andrzej, Tarasiewicz, Piotr, Kunwar, Saket, Rohrbach, Janick, Luo, Dave, Prasad, Manjunath, Fleer, Sascha, Göpfert, Jan Philip, Tandon, Akshat, Mollard, Guillaume, Rayaprolu, Nikhil, Salathe, Marcel, and Schilling, Malte. “Deep Learning for Understanding Satellite Imagery: An Experimental Survey”. Frontiers in Artificial Intelligence 3 (2020): 534696.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
frai-03-534696.pdf
4.93 MB
Access Level
Open Access
Zuletzt Hochgeladen
2021-02-19T16:07:32Z
MD5 Prüfsumme
655bd30e18bbbc7d395f4eb25352762a
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 33733198
PubMed | Europe PMC
Suchen in