Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources

Bracharz F, Helmdach D, Aschenbrenner I, Funck N, Wibberg D, Winkler A, Bohnen F, Kalinowski J, Mehlmer N, Brueck TB (2018)
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY 6: 200.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bracharz, Felix; Helmdach, Daniel; Aschenbrenner, Isabel; Funck, Nils; Wibberg, DanielUniBi; Winkler, AnikaUniBi; Bohnen, Frank; Kalinowski, JörnUniBi; Mehlmer, Norbert; Brueck, Thomas B.
Abstract / Bemerkung
Harvest and dewatering poses a significant economical burden for industrial algae biomass production. To mitigate these effects, energy efficient techniques for these process steps have to be developed. Flocculation of the microalgae Scenedesmus obtusiusculus in salt based medium was induced by pH-shift and alternatively by addition of two biological flocculants, chitosan, and the commercial tannin CFL-PT. This is the first time that CEL-PT is used as an algae flocculant particularly focusing on harvesting of halophilic strains. The method was characterized and subsequently optimized. In comparison to biological flocculants, induction by pH shift is far cheaper, but due to buffering effects of the brackish cultivation medium infeasible amounts of base are required to raise the pH-value. tannin appears to be superior compared to chitosan not only in the absence of algae organic matter (AOM), but tannin-based harvest is also more robust regarding culture pH in presence of AOM. A higher flocculant-demand for modified tannin compared to chitosan is offset by the lower price. Given the employed strain and cultivation conditions, cultivation time had no pronounced effect on flocculation efficiencies (FE) while algae zeta-potential and bacterial communities also remained stable.
Erscheinungsjahr
2018
Zeitschriftentitel
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
Band
6
Art.-Nr.
200
ISSN
2296-4185
Page URI
https://pub.uni-bielefeld.de/record/2932964

Zitieren

Bracharz F, Helmdach D, Aschenbrenner I, et al. Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY. 2018;6: 200.
Bracharz, F., Helmdach, D., Aschenbrenner, I., Funck, N., Wibberg, D., Winkler, A., Bohnen, F., et al. (2018). Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 6, 200. doi:10.3389/fbioe.2018.00200
Bracharz, Felix, Helmdach, Daniel, Aschenbrenner, Isabel, Funck, Nils, Wibberg, Daniel, Winkler, Anika, Bohnen, Frank, Kalinowski, Jörn, Mehlmer, Norbert, and Brueck, Thomas B. 2018. “Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources”. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY 6: 200.
Bracharz, F., Helmdach, D., Aschenbrenner, I., Funck, N., Wibberg, D., Winkler, A., Bohnen, F., Kalinowski, J., Mehlmer, N., and Brueck, T. B. (2018). Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY 6:200.
Bracharz, F., et al., 2018. Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 6: 200.
F. Bracharz, et al., “Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources”, FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, vol. 6, 2018, : 200.
Bracharz, F., Helmdach, D., Aschenbrenner, I., Funck, N., Wibberg, D., Winkler, A., Bohnen, F., Kalinowski, J., Mehlmer, N., Brueck, T.B.: Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY. 6, : 200 (2018).
Bracharz, Felix, Helmdach, Daniel, Aschenbrenner, Isabel, Funck, Nils, Wibberg, Daniel, Winkler, Anika, Bohnen, Frank, Kalinowski, Jörn, Mehlmer, Norbert, and Brueck, Thomas B. “Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources”. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY 6 (2018): 200.

75 References

Daten bereitgestellt von Europe PubMed Central.

Optimization of microalgae coagulation process using chitosan
Ahmad A., Mat N., Derek C., Lim J.., 2011
Harvesting techniques applied to microalgae: a review
Barros A., Gonçalves A., Simões M., Pires J.., 2015
Municipal wastewater treatment by modified tannin flocculant agent
Beltrán-Heredia J., Sánchez-Martín J.., 2009
Influence of algogenic organic substances on flocculation and filtration
Bernhardt H., Lüsse B., Schell H., Hoyer O.., 1991

AUTHOR UNKNOWN, 2017
Optimization of freshwater microalgal biomass harvest using polymeric flocculants
Bleeke F., Milas M., Winckelmann D., Klöck G.., 2015
Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants.
Borde X, Guieysse B, Delgado O, Munoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B., Bioresour. Technol. 86(3), 2003
PMID: 12688473
Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products
Brennan L., Owende P.., 2010
Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.
Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K, Posten C., Bioresour. Technol. 118(), 2012
PMID: 22705536
Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS., Bioresour. Technol. 102(1), 2010
PMID: 20674344
Harmful algal blooms mitigation using clay/soil/sand modified with xanthan and calcium hydroxide
Chen J., Pan G.., 2012
Biodiesel from microalgae.
Chisti Y., Biotechnol. Adv. 25(3), 2007
PMID: 17350212
Microalgal growth characteristics and subsequent influence on dewatering efficiency
Danquah M., Gladman B., Moheimani N., Forde G.., 2009
Flocculation of algae using chitosan
Divakaran R., Sivasankara V.., 2002

Dunn K.., 2015
Search and clustering orders of magnitude faster than BLAST.
Edgar RC., Bioinformatics 26(19), 2010
PMID: 20709691
Nitrate and phosphate removal by chitosan immobilized Scenedesmus.
Fierro S, Sanchez-Saavedra Mdel P, Copalcua C., Bioresour. Technol. 99(5), 2007
PMID: 17531478
Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds.
Fuentes JL, Garbayo I, Cuaresma M, Montero Z, Gonzalez-Del-Valle M, Vilchez C., Mar Drugs 14(5), 2016
PMID: 27213407
Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants
Gerardo M., Van S., Vervaeren H., Coward T., Skill S.., 2015
Performance of chitosan as a primary coagulant for the wastewater treatment
Gidas M.-B., Garnier O., Gidas N.., 1970
Microflotation performance for algal separation.
Hanotu J, Bandulasena HC, Zimmerman WB., Biotechnol. Bioeng. 109(7), 2012
PMID: 22290221
Harvesting of Chlorella sp. using hollow fiber ultrafiltration.
Huang C, Chen X, Liu T, Yang Z, Xiao Y, Zeng G, Sun X., Environ Sci Pollut Res Int 19(5), 2012
PMID: 22354358
Regularization Paths for Generalized Linear Models via Coordinate Descent.
Friedman J, Hastie T, Tibshirani R., J Stat Softw 33(1), 2010
PMID: 20808728
Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris.
Lee J, Cho DH, Ramanan R, Kim BH, Oh HM, Kim HS., Bioresour. Technol. 131(), 2012
PMID: 23347927
Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes.
Liebe S, Wibberg D, Winkler A, Puhler A, Schluter A, Varrelmann M., FEMS Microbiol. Ecol. 92(2), 2016
PMID: 26738557
FLASH: fast length adjustment of short reads to improve genome assemblies.
Magoc T, Salzberg SL., Bioinformatics 27(21), 2011
PMID: 21903629
Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis.
Maus I, Kim YS, Wibberg D, Stolze Y, Off S, Antonczyk S, Puhler A, Scherer P, Schluter A., J. Microbiol. Biotechnol. 27(2), 2017
PMID: 27780961
A review of the harvesting of micro-algae for biofuel production
Milledge J., Heaven S.., 2013
Recovery of microalgal biomass and metabolites: process options and economics.
Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y., Biotechnol. Adv. 20(7-8), 2003
PMID: 14550018
Harvesting marine microalgae species by chitosan flocculation
Morales J., de J., Picard G.., 1985
Application of chitosan as a flocculant for the cultures of the green alga: Scenedesmus acutus
Nigam B., Ramanathan P.., 1980
Bacterial exopolysaccharides: functionality and prospects.
Nwodo UU, Green E, Okoh AI., Int J Mol Sci 13(11), 2012
PMID: 23203046

Pandey A., Lee D., Chisti Y., Soccol C.., 2013
Study of influence of pH and salinity on combined flocculation of Chaetoceros gracilis microalgae
Pérez L., Salgueiro J., Maceiras R., Cancela Á., Sánchez Á.., 2016
The promise and challenges of microalgal-derived biofuels
Pienkos P., Darzins A.., 2009
Harvesting microalgae with microwave synthesized magnetic microparticles.
Prochazkova G, Safarik I, Branyik T., Bioresour. Technol. 130(), 2012
PMID: 23313695

AUTHOR UNKNOWN, 2014
Algae-bacteria interactions: Evolution, ecology and emerging applications.
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS., Biotechnol. Adv. 34(1), 2015
PMID: 26657897
Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation.
Rangjaroen C, Sungthong R, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S., Microbes Environ. 32(1), 2017
PMID: 28228608
Optimization of chitosan flocculation for microalgal-bacterial biomass harvesting via response surface methodology
Riaño B., Molinuevo B., García-González M.., 2012
Fouling phenomena during membrane filtration of microalgae
Rickman M., Pellegrino J., Davis R.., 2012

Roselet F., Vandamme D., Roselet M., Muylaert K., Abreu P.., 2012
Harvesting of microalgae by bio-flocculation.
Salim S, Bosma R, Vermue MH, Wijffels RH., J. Appl. Phycol. 23(5), 2010
PMID: 21957329
Present and potential industrial applications of macro- and microalgae.
Sanghvi AM, Lo YM., Recent Pat Food Nutr Agric 2(3), 2010
PMID: 20858194
Composition of algal oil and its potential as biofuel
Schlagermann P., Göttlicher G., Dillschneider R., Rosello-Sastre R., Posten C.., 2012
Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production.
Schlesinger A, Eisenstadt D, Bar-Gil A, Carmely H, Einbinder S, Gressel J., Biotechnol. Adv. 30(5), 2012
PMID: 22306161
A one-stage cultivation process for lipid- and carbohydrate-rich biomass of Scenedesmus obtusiusculus based on artificial and natural water sources.
Schulze C, Reinhardt J, Wurster M, Ortiz-Tena JG, Sieber V, Mundt S., Bioresour. Technol. 218(), 2016
PMID: 27394996

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2017
Flocculation optimization of microalga Nannochloropsis oculata.
Shen Y, Cui Y, Yuan W., Appl. Biochem. Biotechnol. 169(7), 2013
PMID: 23361974
Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation
Sirin S., Trobajo R., Ibanez C., Salvadó J.., 2012
Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO regulation
Spilling K., Seppälä J., Tamminen T.., 2011
Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome.
Theuerl S, Kohrs F, Benndorf D, Maus I, Wibberg D, Schluter A, Kausmann R, Heiermann M, Rapp E, Reichl U, Puhler A, Klocke M., Appl. Microbiol. Biotechnol. 99(18), 2015
PMID: 25998656
Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus.
Toledo-Cervantes A, Morales M, Novelo E, Revah S., Bioresour. Technol. 130(), 2012
PMID: 23334023
Dewatering of microalgal cultures: a major bottleneck to algae-based fuels
Uduman N., Qi Y., Danquah M., Forde G., Andrew H.., 2010
Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications.
Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K., Bioresour. Technol. 105(), 2011
PMID: 22182473
Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation.
Vandamme D, Foubert I, Fraeye I, Muylaert K., Bioresour. Technol. 124(), 2012
PMID: 23010213
Flocculation as a low-cost method for harvesting microalgae for bulk biomass production.
Vandamme D, Foubert I, Muylaert K., Trends Biotechnol. 31(4), 2013
PMID: 23336995

Venables W., Ripley B.., 2002
Flocculation of Microcystis aeruginosa using modified larch tannin.
Wang L, Liang W, Yu J, Liang Z, Ruan L, Zhang Y., Environ. Sci. Technol. 47(11), 2013
PMID: 23647228
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Wang Q, Garrity GM, Tiedje JM, Cole JR., Appl. Environ. Microbiol. 73(16), 2007
PMID: 17586664
Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes.
Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, Puhler A, Fogelqvist J, Varrelmann M, Schluter A, Dixelius C., BMC Genomics 17(), 2016
PMID: 26988094

Wickham H.., 2009

Wickham H., Hester J., Francois R.., 2017

Wilke C.., 2016
Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells
Zhou W., Min M., Hu B., Ma X., Liu Y., Wang Q.., 2013
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30619847
PubMed | Europe PMC

Suchen in

Google Scholar