Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data

Klostermann J, Plumeyer A, Böger D, Decker R (2018)
International Journal of Research in Marketing 35(4): 538-556.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Images are an essential feature of many social networking services, such as Facebook, Instagram, and Twitter. Through brand-related images, consumers communicate about brands with each other and link the brand with rich contextual and consumption experiences. However, previous articles in marketing research have concentrated on deriving brand information from textual user-generated content and have largely not considered brand-related images. The analysis of brand-related images yields at least two challenges. First, the content displayed in images is heterogeneous, and second, images rarely show what users think and feel in or about the situations displayed. To meet these challenges, this article presents a two-step approach that involves collecting, labeling, clustering, aggregating, mapping, and analyzing brand-related user-generated content. The collected data are brand-related images, caption texts, and social tags posted on Instagram. Clustering images labeled via Google Cloud Vision API enabled to identify heterogeneous contents (e.g. products) and contexts (e.g. situations) that consumers create content about. Aggregating and mapping the textual information for the resulting image clusters in the form of associative networks empowers marketers to derive meaningful insights by inferring what consumers think and feel about their brand regarding different contents and contexts.
Stichworte
Brand associative network; Image classification; Instagram; Sentiment analysis; Social tag; User-generated content
Erscheinungsjahr
2018
Zeitschriftentitel
International Journal of Research in Marketing
Band
35
Ausgabe
4
Seite(n)
538-556
eISSN
1873-8001
Page URI
https://pub.uni-bielefeld.de/record/2930294

Zitieren

Klostermann J, Plumeyer A, Böger D, Decker R. Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data. International Journal of Research in Marketing. 2018;35(4):538-556.
Klostermann, J., Plumeyer, A., Böger, D., & Decker, R. (2018). Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data. International Journal of Research in Marketing, 35(4), 538-556. doi:10.1016/j.ijresmar.2018.08.002
Klostermann, J., Plumeyer, A., Böger, D., and Decker, R. (2018). Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data. International Journal of Research in Marketing 35, 538-556.
Klostermann, J., et al., 2018. Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data. International Journal of Research in Marketing, 35(4), p 538-556.
J. Klostermann, et al., “Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data”, International Journal of Research in Marketing, vol. 35, 2018, pp. 538-556.
Klostermann, J., Plumeyer, A., Böger, D., Decker, R.: Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data. International Journal of Research in Marketing. 35, 538-556 (2018).
Klostermann, Jan, Plumeyer, Anja, Böger, Daniel, and Decker, Reinhold. “Extracting Brand Information from Social Networks. Integrating Image, Text, and Social Tagging Data”. International Journal of Research in Marketing 35.4 (2018): 538-556.