Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces
Queißer J, Steil JJ (2018)
Frontiers in Robotics and AI 5: 49.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
frobt-05-00049.queisser.pdf
3.86 MB
Autor*in
Einrichtung
Abstract / Bemerkung
Modern robotic applications create high demands on adaptation of actions with respect to
variance in a given task. Reinforcement learning is able to optimize for these changing conditions,
but relearning from scratch is hardly feasible due to the high number of required rollouts. We
propose a parameterized skill that generalizes to new actions for changing task parameters,
which is encoded as a meta-learner that provides parameters for task-specific dynamic motion
primitives. Our work shows that utilizing parameterized skills for initialization of the optimization
process leads to a more effective incremental task learning. In addition, we introduce a hybrid
optimization method that combines a fast coarse optimization on a manifold of policy parameters
with a fine grained parameter search in the unrestricted space of actions. The proposed algorithm
reduces the number of required rollouts for adaptation to new task conditions. Application in
illustrative toy scenarios, for a 10-DOF planar arm, and a humanoid robot point reaching task
validate the approach.
Stichworte
reinforcement learning;
policy optimization;
memory;
learning;
hybrid optimization;
dimensionality reduction;
parameterized skills
Erscheinungsjahr
2018
Zeitschriftentitel
Frontiers in Robotics and AI
Band
5
Seite(n)
49
Urheberrecht / Lizenzen
eISSN
2296-9144
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2919119
Zitieren
Queißer J, Steil JJ. Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI. 2018;5:49.
Queißer, J., & Steil, J. J. (2018). Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI, 5, 49. https://doi.org/10.3389/frobt.2018.00049
Queißer, Jeffrey, and Steil, Jochen J. 2018. “Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces”. Frontiers in Robotics and AI 5: 49.
Queißer, J., and Steil, J. J. (2018). Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI 5, 49.
Queißer, J., & Steil, J.J., 2018. Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI, 5, p 49.
J. Queißer and J.J. Steil, “Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces”, Frontiers in Robotics and AI, vol. 5, 2018, pp. 49.
Queißer, J., Steil, J.J.: Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI. 5, 49 (2018).
Queißer, Jeffrey, and Steil, Jochen J. “Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces”. Frontiers in Robotics and AI 5 (2018): 49.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
frobt-05-00049.queisser.pdf
3.86 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-25T06:52:46Z
MD5 Prüfsumme
2c3e5ad9241d3a5e13968279e07f0ea7
Link(s) zu Volltext(en)
Access Level
Open Access
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 33500934
PubMed | Europe PMC
Suchen in