Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces

Queißer J, Steil JJ (2018)
Frontiers in Robotics and AI 5: 49.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 3.86 MB
Abstract / Bemerkung
Modern robotic applications create high demands on adaptation of actions with respect to variance in a given task. Reinforcement learning is able to optimize for these changing conditions, but relearning from scratch is hardly feasible due to the high number of required rollouts. We propose a parameterized skill that generalizes to new actions for changing task parameters, which is encoded as a meta-learner that provides parameters for task-specific dynamic motion primitives. Our work shows that utilizing parameterized skills for initialization of the optimization process leads to a more effective incremental task learning. In addition, we introduce a hybrid optimization method that combines a fast coarse optimization on a manifold of policy parameters with a fine grained parameter search in the unrestricted space of actions. The proposed algorithm reduces the number of required rollouts for adaptation to new task conditions. Application in illustrative toy scenarios, for a 10-DOF planar arm, and a humanoid robot point reaching task validate the approach.
Stichworte
reinforcement learning; policy optimization; memory; learning; hybrid optimization; dimensionality reduction; parameterized skills
Erscheinungsjahr
2018
Zeitschriftentitel
Frontiers in Robotics and AI
Band
5
Seite(n)
49
eISSN
2296-9144
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2919119

Zitieren

Queißer J, Steil JJ. Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI. 2018;5:49.
Queißer, J., & Steil, J. J. (2018). Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI, 5, 49. https://doi.org/10.3389/frobt.2018.00049
Queißer, Jeffrey, and Steil, Jochen J. 2018. “Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces”. Frontiers in Robotics and AI 5: 49.
Queißer, J., and Steil, J. J. (2018). Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI 5, 49.
Queißer, J., & Steil, J.J., 2018. Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI, 5, p 49.
J. Queißer and J.J. Steil, “Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces”, Frontiers in Robotics and AI, vol. 5, 2018, pp. 49.
Queißer, J., Steil, J.J.: Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces. Frontiers in Robotics and AI. 5, 49 (2018).
Queißer, Jeffrey, and Steil, Jochen J. “Bootstrapping of parameterized skills through hybrid optimization in task and policy spaces”. Frontiers in Robotics and AI 5 (2018): 49.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:52:46Z
MD5 Prüfsumme
2c3e5ad9241d3a5e13968279e07f0ea7


Link(s) zu Volltext(en)
Access Level
OA Open Access

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 33500934
PubMed | Europe PMC

Suchen in

Google Scholar