The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry

Senges CHR, Al-Dilaimi A, Marchbank DH, Wibberg D, Winkler A, Haltli B, Nowrousian M, Kalinowski J, Kerr RG, Bandow JE (2018)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Senges, Christoph H. R.; Al-Dilaimi, ArwaUniBi; Marchbank, Douglas H.; Wibberg, DanielUniBi; Winkler, AnikaUniBi; Haltli, Brad; Nowrousian, Minou; Kalinowski, JörnUniBi; Kerr, Russell G.; Bandow, Julia E.
Abstract / Bemerkung
Actinomycetes are known for producing diverse secondary metabolites. Combining genomics with untargeted data-dependent tandem MS and molecular networking, we characterized the secreted metabolome of the tunicamycin producer Streptomyces chartreusis NRRL 3882. The genome harbors 128 predicted biosynthetic gene clusters. We detected > 1,000 distinct secreted metabolites in culture supernatants, only 22 of which were identified based on standards and public spectral libraries. S. chartreusis adapts the secreted metabolome to cultivation conditions. A number of metabolites are produced iron dependently, among them 17 desferrioxamine siderophores aiding in iron acquisition. Eight previously unknown members of this long-known compound class are described. A single desferrioxamine synthesis gene cluster was detected in the genome, yet different sets of desferrioxamines are produced in different media. Additionally, a polyether ionophore, differentially produced by the calcimycin biosynthesis cluster, was discovered. This illustrates that metabolite output of a single biosynthetic machine can be exquisitely regulated not only with regard to product quantity but also with regard to product range. Compared with chemically defined medium, in complex medium, total metabolite abundancewas higher, structural diversity greater, and the average molecular weight almost doubled. Tunicamycins, for example, were only produced in complex medium. Extrapolating from this study, we anticipate that the larger part of bacterial chemistry, including chemical structures, ecological functions, and pharmacological potential, is yet to be uncovered.
metabolomics; secondary metabolites; antibiotics; siderophores
Page URI


Senges CHR, Al-Dilaimi A, Marchbank DH, et al. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2018;115(10):2490-2495.
Senges, C. H. R., Al-Dilaimi, A., Marchbank, D. H., Wibberg, D., Winkler, A., Haltli, B., Nowrousian, M., et al. (2018). The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 115(10), 2490-2495. doi:10.1073/pnas.1715713115
Senges, C. H. R., Al-Dilaimi, A., Marchbank, D. H., Wibberg, D., Winkler, A., Haltli, B., Nowrousian, M., Kalinowski, J., Kerr, R. G., and Bandow, J. E. (2018). The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 115, 2490-2495.
Senges, C.H.R., et al., 2018. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 115(10), p 2490-2495.
C.H.R. Senges, et al., “The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 115, 2018, pp. 2490-2495.
Senges, C.H.R., Al-Dilaimi, A., Marchbank, D.H., Wibberg, D., Winkler, A., Haltli, B., Nowrousian, M., Kalinowski, J., Kerr, R.G., Bandow, J.E.: The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 115, 2490-2495 (2018).
Senges, Christoph H. R., Al-Dilaimi, Arwa, Marchbank, Douglas H., Wibberg, Daniel, Winkler, Anika, Haltli, Brad, Nowrousian, Minou, Kalinowski, Jörn, Kerr, Russell G., and Bandow, Julia E. “The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry”. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 115.10 (2018): 2490-2495.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Streptomyces Volatile Compounds Influence Exploration and Microbial Community Dynamics by Altering Iron Availability.
Jones SE, Pham CA, Zambri MP, McKillip J, Carlson EE, Elliot MA., MBio 10(2), 2019
PMID: 30837334
Editorial: Actinobacteria, a Source of Biocatalytic Tools.
Tischler D, van Berkel WJH, Fraaije MW., Front Microbiol 10(), 2019
PMID: 31040839
The chemical biology and coordination chemistry of putrebactin, avaroferrin, bisucaberin, and alcaligin.
Codd R, Soe CZ, Pakchung AAH, Sresutharsan A, Brown CJM, Tieu W., J Biol Inorg Chem 23(7), 2018
PMID: 29946977
Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms.
Romano S, Jackson SA, Patry S, Dobson ADW., Mar Drugs 16(7), 2018
PMID: 30041461

60 References

Daten bereitgestellt von Europe PubMed Central.

[Clinical and laboratory study of a new antibiotic: tetracycline.]
FINDLAND M., Odontoiatr Rev Iberoam Med Boca 11(126), 1954
PMID: 14384150

A new antibiotic kills pathogens without detectable resistance.
Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K., Nature 517(7535), 2015
PMID: 25561178
Retrospective analysis of natural products provides insights for future discovery trends.
Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG., Proc. Natl. Acad. Sci. U.S.A. 114(22), 2017
PMID: 28461474
Fungal secondary metabolism - from biochemistry to genomics.
Keller NP, Turner G, Bennett JW., Nat. Rev. Microbiol. 3(12), 2005
PMID: 16322742
Socially mediated induction and suppression of antibiosis during bacterial coexistence.
Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE., Proc. Natl. Acad. Sci. U.S.A. 112(35), 2015
PMID: 26216986
Widespread predatory abilities in the genus Streptomyces.
Kumbhar C, Mudliar P, Bhatia L, Kshirsagar A, Watve M., Arch. Microbiol. 196(4), 2014
PMID: 24535490
Are antibiotics naturally antibiotics?
Davies J., J. Ind. Microbiol. Biotechnol. 33(7), 2006
PMID: 16552582
An ecological perspective of microbial secondary metabolism.
O'Brien J, Wright GD., Curr. Opin. Biotechnol. 22(4), 2011
PMID: 21498065
Natural product discovery: past, present, and future.
Katz L, Baltz RH., J. Ind. Microbiol. Biotechnol. 43(2-3), 2016
PMID: 26739136
Gifted microbes for genome mining and natural product discovery.
Baltz RH., J. Ind. Microbiol. Biotechnol. 44(4-5), 2016
PMID: 27520548
Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster.
Thanapipatsiri A, Gomez-Escribano JP, Song L, Bibb MJ, Al-Bassam M, Chandra G, Thamchaipenet A, Challis GL, Bibb MJ., Chembiochem 17(22), 2016
PMID: 27605017
Big effects from small changes: possible ways to explore nature's chemical diversity.
Bode HB, Bethe B, Hofs R, Zeeck A., Chembiochem 3(7), 2002
PMID: 12324995
The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms.
Reen FJ, Romano S, Dobson AD, O'Gara F., Mar Drugs 13(8), 2015
PMID: 26264003
Discovery of microbial natural products by activation of silent biosynthetic gene clusters.
Rutledge PJ, Challis GL., Nat. Rev. Microbiol. 13(8), 2015
PMID: 26119570
Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery.
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL., Biotechnol. Adv. 32(6), 2014
PMID: 24651031
Multi-well fungal co-culture for de novo metabolite-induction in time-series studies based on untargeted metabolomics.
Bertrand S, Azzollini A, Schumpp O, Bohni N, Schrenzel J, Monod M, Gindro K, Wolfender JL., Mol Biosyst 10(9), 2014
PMID: 24948000
Mapping Microbial Response Metabolomes for Induced Natural Product Discovery.
Derewacz DK, Covington BC, McLean JA, Bachmann BO., ACS Chem. Biol. 10(9), 2015
PMID: 26039241
Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145.
Sidebottom AM, Johnson AR, Karty JA, Trader DJ, Carlson EE., ACS Chem. Biol. 8(9), 2013
PMID: 23777274
Genome sequences of three tunicamycin-producing Streptomyces Strains, S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396.
Doroghazi JR, Ju KS, Brown DW, Labeda DP, Deng Z, Metcalf WW, Chen W, Price NP., J. Bacteriol. 193(24), 2011
PMID: 22123769
antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH., Nucleic Acids Res. 43(W1), 2015
PMID: 25948579
Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.
Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crusemann M, Boudreau PD, Esquenazi E, Sandoval-Calderon M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, P CAB, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O'Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodriguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Muller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutierrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N., Nat. Biotechnol. 34(8), 2016
PMID: 27504778
Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901.
Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CA, Distel DL, Butler A, Haygood MG., PLoS ONE 8(10), 2013
PMID: 24146831
Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean.
Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, Sedwick PN, DeLong EF, Repeta DJ., Proc. Natl. Acad. Sci. U.S.A. 113(50), 2016
PMID: 27911777
Quantitative mass spectrometry in proteomics: a critical review.
Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B., Anal Bioanal Chem 389(4), 2007
PMID: 17668192
Tackling CASMI 2012: Solutions from MetFrag and MetFusion.
Ruttkies C, Gerlich M, Neumann S., Metabolites 3(3), 2013
PMID: 24958142
Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in Streptomyces chartreusis NRRL 3882.
Wu Q, Liang J, Lin S, Zhou X, Bai L, Deng Z, Wang Z., Antimicrob. Agents Chemother. 55(3), 2010
PMID: 21173184
Characterization of the N-methyltransferase CalM involved in calcimycin biosynthesis by Streptomyces chartreusis NRRL 3882.
Wu Q, Gou L, Lin S, Liang J, Yin J, Zhou X, Bai L, An D, Deng Z, Wang Z., Biochimie 95(7), 2013
PMID: 23583975
Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin.
Takatsuki A, Arima K, Tamura G., J. Antibiot. 24(4), 1971
PMID: 5572750
Biosynthesis of the tunicamycins: a review.
Price NP, Tsvetanova B., J. Antibiot. 60(8), 2007
PMID: 17827659
Biological activities of isolated tunicamycin and streptovirudin fractions.
Keenan RW, Hamill RL, Occolowitz JL, Elbein AD., Biochemistry 20(10), 1981
PMID: 6454439
Bisucaberin biosynthesis: An adenylating domain of the BibC multi-enzyme catalyzes cyclodimerization of N-hydroxy-N-succinylcadaverine
Kadi N, Song L, Challis GL., 2008
Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145.
Barona-Gomez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL., J. Am. Chem. Soc. 126(50), 2004
PMID: 15600304
Universal chemical assay for the detection and determination of siderophores.
Schwyn B, Neilands JB., Anal. Biochem. 160(1), 1987
PMID: 2952030
Exploring skyline for both MS(E) -based label-free proteomics and HRMS quantitation of small molecules.
Liu S, Chen X, Yan Z, Qin S, Xu J, Lin J, Yang C, Shui W., Proteomics 14(2-3), 2014
PMID: 24307133

Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA., 2000
Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species.
Kim JN, Kim Y, Jeong Y, Roe JH, Kim BG, Cho BK., J. Microbiol. Biotechnol. 25(10), 2015
PMID: 26032364
Metabolic profiling directly from the Petri dish using nanospray desorption electrospray ionization imaging mass spectrometry.
Watrous J, Roach P, Heath B, Alexandrov T, Laskin J, Dorrestein PC., Anal. Chem. 85(21), 2013
PMID: 24047514
Mapping the Trimethoprim-Induced Secondary Metabolome of Burkholderia thailandensis.
Okada BK, Wu Y, Mao D, Bushin LB, Seyedsayamdost MR., ACS Chem. Biol. 11(8), 2016
PMID: 27367535
Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species.
Ueda K, Kawai S, Ogawa H, Kiyama A, Kubota T, Kawanobe H, Beppu T., J. Antibiot. 53(9), 2000
PMID: 11099234
KEBERLE H., Ann. N. Y. Acad. Sci. 119(), 1964
PMID: 14219455
Proferrioxamine siderophores of Erwinia amylovora: A capillary liquid chromatographic/electrospray tandem mass spectrometry study
Feistner GJ, Stahl DC, Gabrik AH., 1993
Harnessing natural product assembly lines: structure, promiscuity, and engineering.
Ladner CC, Williams GJ., J. Ind. Microbiol. Biotechnol. 43(2-3), 2015
PMID: 26527577
Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases.
Pandith SA, Dhar N, Rana S, Bhat WW, Kushwaha M, Gupta AP, Shah MA, Vishwakarma R, Lattoo SK., Plant Physiol. 171(4), 2016
PMID: 27268960
Promiscuity of a modular polyketide synthase towards natural and non-natural extender units.
Koryakina I, McArthur JB, Draelos MM, Williams GJ., Org. Biomol. Chem. 11(27), 2013
PMID: 23681002
An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases.
Austin MB, Bowman ME, Ferrer JL, Schroder J, Noel JP., Chem. Biol. 11(9), 2004
PMID: 15380179
Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.
Vargas-Bautista C, Rahlwes K, Straight P., J. Bacteriol. 196(4), 2013
PMID: 24187085
Ionophore 4-BrA23187 transports Zn2+ and Mn2+ with high selectivity over Ca2+.
Erdahl WL, Chapman CJ, Wang E, Taylor RW, Pfeiffer DR., Biochemistry 35(43), 1996
PMID: 8901524
Bromo-A23187: a nonfluorescent calcium ionophore for use with fluorescent probes.
Deber CM, Tom-Kun J, Mack E, Grinstein S., Anal. Biochem. 146(2), 1985
PMID: 3927770
Ionophore A23187: Cation binding and transport properties
Pfeiffer DR, Taylor RW, Lardy HA., 1978
Molybdenum trafficking for nitrogen fixation.
Hernandez JA, George SJ, Rubio LM., Biochemistry 48(41), 2009
PMID: 19772354
Beyond iron: non-classical biological functions of bacterial siderophores.
Johnstone TC, Nolan EM., Dalton Trans 44(14), 2015
PMID: 25764171
Electrochemical Behavior of the Fe(III) Complexes of the Cyclic Hydroxamate Siderophores Alcaligin and Desferrioxamine E.
Spasojevic I, Armstrong SK, Brickman TJ, Crumbliss AL., Inorg Chem 38(3), 1999
PMID: 11673947
Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome.
Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R., MBio 4(4), 2013
PMID: 23963177


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 29463727
PubMed | Europe PMC

Suchen in

Google Scholar