Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants

Maus I, Wibberg D, Stantscheff R, Stolze Y, Blom J, Eikmeyer FG, Fracowiak J, König H, Pühler A, Schlüter A (2015)
Journal of Biotechnology 201: 43-53.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Maus, IrenaUniBi; Wibberg, DanielUniBi; Stantscheff, Robbin; Stolze, YvonneUniBi; Blom, Jochen; Eikmeyer, Felix GregorUniBi ; Fracowiak, Jochen; König, Helmut; Pühler, AlfredUniBi ; Schlüter, AndreasUniBi
Abstract / Bemerkung
The final step of the biogas production process, the methanogenesis, is frequently dominated by members of the genus Methanoculleus. In particular, the species Methanoculleus bourgensis was identified to play a role in different biogas reactor systems. The genome of the type strain M. bourgensis MS2(T), originally isolated from a sewage sludge digestor, was completely sequenced to analyze putative adaptive genome features conferring competitiveness within biogas reactor environments to the strain. Sequencing and assembly of the M. bourgensis MS2(T) genome yielded a chromosome with a size of 2,789,773 bp. Comparative analysis of M. bourgensis MS2(T) and Methanoculleus marisnigri JR1 revealed significant similarities. The absence of genes for a putative ammonium uptake system may indicate that M. bourgensis MS2(T) is adapted to environments rich in ammonium/ammonia. Specific genes featuring predicted functions in the context of osmolyte production were detected in the genome of M. bourgensis MS2(T). Mapping of metagenome sequences derived from a production-scale biogas plant revealed that M. bourgensis MS2(T) almost completely comprises the genetic information of dominant methanogens present in the biogas reactor analyzed. Hence, availability of the M. bourgensis MS2(T) genome sequence may be valuable regarding further research addressing the performance of Methanoculleus species in agricultural biogas plants. (C) 2014 Elsevier B.V. All rights reserved.
Stichworte
Methanomicrobiales; Nitrogen metabolism; Metagenome; Archaea; Compatible solute
Erscheinungsjahr
2015
Zeitschriftentitel
Journal of Biotechnology
Band
201
Seite(n)
43-53
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2733509

Zitieren

Maus I, Wibberg D, Stantscheff R, et al. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. Journal of Biotechnology. 2015;201:43-53.
Maus, I., Wibberg, D., Stantscheff, R., Stolze, Y., Blom, J., Eikmeyer, F. G., Fracowiak, J., et al. (2015). Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. Journal of Biotechnology, 201, 43-53. doi:10.1016/j.jbiotec.2014.11.020
Maus, Irena, Wibberg, Daniel, Stantscheff, Robbin, Stolze, Yvonne, Blom, Jochen, Eikmeyer, Felix Gregor, Fracowiak, Jochen, König, Helmut, Pühler, Alfred, and Schlüter, Andreas. 2015. “Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants”. Journal of Biotechnology 201: 43-53.
Maus, I., Wibberg, D., Stantscheff, R., Stolze, Y., Blom, J., Eikmeyer, F. G., Fracowiak, J., König, H., Pühler, A., and Schlüter, A. (2015). Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. Journal of Biotechnology 201, 43-53.
Maus, I., et al., 2015. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. Journal of Biotechnology, 201, p 43-53.
I. Maus, et al., “Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants”, Journal of Biotechnology, vol. 201, 2015, pp. 43-53.
Maus, I., Wibberg, D., Stantscheff, R., Stolze, Y., Blom, J., Eikmeyer, F.G., Fracowiak, J., König, H., Pühler, A., Schlüter, A.: Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. Journal of Biotechnology. 201, 43-53 (2015).
Maus, Irena, Wibberg, Daniel, Stantscheff, Robbin, Stolze, Yvonne, Blom, Jochen, Eikmeyer, Felix Gregor, Fracowiak, Jochen, König, Helmut, Pühler, Alfred, and Schlüter, Andreas. “Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants”. Journal of Biotechnology 201 (2015): 43-53.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors.
Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A, Klocke M., Biotechnol Biofuels 11(), 2018
PMID: 29951113
Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes.
Maus I, Bremges A, Stolze Y, Hahnke S, Cibis KG, Koeck DE, Kim YS, Kreubel J, Hassa J, Wibberg D, Weimann A, Off S, Stantscheff R, Zverlov VV, Schwarz WH, König H, Liebl W, Scherer P, McHardy AC, Sczyrba A, Klocke M, Pühler A, Schlüter A., Biotechnol Biofuels 10(), 2017
PMID: 29158776
Complete Genome Sequence of the Methanogen Methanoculleus bourgensis BA1 Isolated from a Biogas Reactor.
Maus I, Wibberg D, Winkler A, Pühler A, Schnürer A, Schlüter A., Genome Announc 4(3), 2016
PMID: 27340059

77 References

Daten bereitgestellt von Europe PubMed Central.

Distribution of genes for synthesis of trehalose and Mannosylglycerate in Thermus spp. and direct correlation of these genes with halotolerance.
Alarico S, Empadinhas N, Simoes C, Silva Z, Henne A, Mingote A, Santos H, da Costa MS., Appl. Environ. Microbiol. 71(5), 2005
PMID: 15870334
Complete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1.
Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Tice H, Dalin E, Barry K, Saunders E, Han C, Brettin T, Detter JC, Bruce D, Mikhailova N, Pitluck S, Hauser L, Land M, Lucas S, Richardson P, Whitman WB, Kyrpides NC., Stand Genomic Sci 1(2), 2009
PMID: 21304656
Expression, purification and crystallization of the ammonium transporter Amt-1 from Archaeoglobus fulgidus.
Andrade SL, Dickmanns A, Ficner R, Einsle O., Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61(Pt 9), 2005
PMID: 16511180
Insights on the evolution of trehalose biosynthesis.
Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G., BMC Evol. Biol. 6(), 2006
PMID: 17178000
Methanogens: reevaluation of a unique biological group.
Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS., Microbiol. Rev. 43(2), 1979
PMID: 390357
Higher-level classification of the Archaea: evolution of methanogenesis and methanogens.
Bapteste E, Brochier C, Boucher Y., Archaea 1(5), 2005
PMID: 15876569
Identification of Methanoculleus spp. as active methanogens during anoxic incubations of swine manure storage tank samples.
Barret M, Gagnon N, Kalmokoff ML, Topp E, Verastegui Y, Brooks SP, Matias F, Neufeld JD, Talbot G., Appl. Environ. Microbiol. 79(2), 2012
PMID: 23104405
Methanoculleus spp. as a biomarker of methanogenic activity in swine manure storage tanks.
Barret M, Gagnon N, Morissette B, Topp E, Kalmokoff M, Brooks SP, Matias F, Masse DI, Masse L, Talbot G., FEMS Microbiol. Ecol. 80(2), 2012
PMID: 22268671
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
Isolation and characterization of a novel mesophilic, fresh-water methanogen from river sediment Methanoculleus oldenburgensis sp. nov
Blotevogel, Arch. Microbiol. 157(), 1991
Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance?
Chen, J. Exp. Bot. 58(15–16), 2008
Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China.
Cheng L, Qiu TL, Li X, Wang WD, Deng Y, Yin XB, Zhang H., FEMS Microbiol. Lett. 285(1), 2008
PMID: 18557787
Isolation and characterization of two new methane-producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae, sp. nov
Corder, Arch. Microbiol. 134(), 1983
Osmoregulation
Csonka, 1996
Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among Methanoculleus species.
Dianou D, Miyaki T, Asakawa S, Morii H, Nagaoka K, Oyaizu H, Matsumoto S., Int. J. Syst. Evol. Microbiol. 51(Pt 5), 2001
PMID: 11594593

DSMZ, 2007

DSMZ, 2007
The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution.
Eikmeyer F, Hadiati A, Szczepanowski R, Wibberg D, Schneiker-Bekel S, Rogers LM, Brown CJ, Top EM, Puhler A, Schluter A., Plasmid 68(1), 2012
PMID: 22326849
Diversity and biosynthesis of compatible solutes in hyper/thermophiles.
Empadinhas N, da Costa MS., Int. Microbiol. 9(3), 2006
PMID: 17061210
Impact of trace element addition on biogas production from food industrial waste--linking process to microbial communities.
Feng XM, Karlsson A, Svensson BH, Bertilsson S., FEMS Microbiol. Ecol. 74(1), 2010
PMID: 20633047
How to make a living by exhaling methane.
Ferry JG., Annu. Rev. Microbiol. 64(), 2010
PMID: 20528692
Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion.
Fotidis IA, Karakashev D, Angelidaki I., Bioresour. Technol. 146(), 2013
PMID: 23916979
Euryarchaeota
Garrity, 2001
Consed: a graphical tool for sequence finishing.
Gordon D, Abajian C, Green P., Genome Res. 8(3), 1998
PMID: 9521923
Energy-converting [NiFe] hydrogenases: more than just H2 activation?
Hedderich, J. Mol. Microbiol. Biotechnol. 10(2–4), 2005
Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage.
Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J, Linke B, Goesmann A, Grabherr R, Schwab H, Puhler A, Schluter A., J. Biotechnol. 161(2), 2012
PMID: 22465289
Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis.
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Soll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA., J. Bacteriol. 186(20), 2004
PMID: 15466049
Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing.
Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A., PLoS ONE 6(1), 2011
PMID: 21297863
Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.
Kaster AK, Moll J, Parey K, Thauer RK., Proc. Natl. Acad. Sci. U.S.A. 108(7), 2011
PMID: 21262829
The nif gene operon of the methanogenic archaeon Methanococcus maripaludis.
Kessler PS, Blank C, Leigh JA., J. Bacteriol. 180(6), 1998
PMID: 9515920
Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor?
Krause, J. Biotechnol. 136(1–2), 2008
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology?
Krause, J. Biotechnol. 136(1–2), 2008
Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.
Krober M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehover P, Puhler A, Schluter A., J. Biotechnol. 142(1), 2009
PMID: 19480946
Distribution of compatible solutes in the halophilic methanogenic archaebacteria.
Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP., J. Bacteriol. 173(17), 1991
PMID: 1909318
The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes.
Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR., J. Bacteriol. 188(22), 2006
PMID: 16980466

Maestrojuán, IJSEM 40(2), 1990
Osmoadaptation in archaea
Martin DD, Ciulla RA, Roberts MF., Appl. Environ. Microbiol. 65(5), 1999
PMID: 10223964
Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T), Isolated from a sewage sludge digester.
Maus I, Wibberg D, Stantscheff R, Eikmeyer FG, Seffner A, Boelter J, Szczepanowski R, Blom J, Jaenicke S, Konig H, Puhler A, Schluter A., J. Bacteriol. 194(19), 2012
PMID: 22965103
GenDB-an open source genome annotation system for prokaryote genomes
Meyer, Nucleic Acids Res. 31(), 2003
Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov
Mikucki, Appl. Environ. Microbiol. 69(6), 2002
A serum bottle modification of the Hungate technique for cultivating obligate anaerobes
Miller, App. Microbiol. 27(), 1974
Stress response by solute accumulation in archaea.
Muller V, Spanheimer R, Santos H., Curr. Opin. Microbiol. 8(6), 2005
PMID: 16256422
Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants.
Nettmann E, Bergmann I, Pramschufer S, Mundt K, Plogsties V, Herrmann C, Klocke M., Appl. Environ. Microbiol. 76(8), 2010
PMID: 20154117
Isolation and characterization of Methanogenium bourgense sp. nov
Ollivier, Int. J. Syst. Bacteriol. 36(), 1986
Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Go1 using genome-wide gene expression profiling.
Pfluger K, Ehrenreich A, Salmon K, Gunsalus RP, Deppenmeier U, Gottschalk G, Muller V., FEMS Microbiol. Lett. 277(1), 2007
PMID: 17986088
Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing
Rademacher, FEMS Microbiol. Ecol. 79(3), 2011
Enzymology of the wood-Ljungdahl pathway of acetogenesis.
Ragsdale SW., Ann. N. Y. Acad. Sci. 1125(), 2008
PMID: 18378591
Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation.
Ragsdale SW, Pierce E., Biochim. Biophys. Acta 1784(12), 2008
PMID: 18801467
Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov
Rivard, Int. J. Syst. Bacteriol. 32(), 1982
Free amino acid dynamics in marine methanogens. beta-Amino acids as compatible solutes.
Robertson DE, Noll D, Roberts MF., J. Biol. Chem. 267(21), 1992
PMID: 1353078
Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Go1.
Roessler M, Pfluger K, Flach H, Lienard T, Gottschalk G, Muller V., Appl. Environ. Microbiol. 68(5), 2002
PMID: 11976081
Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov
Romesser, Arch. Microbiol. 121(), 1979
Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes.
Sang NN, Soda S, Ishigaki T, Ike M., J. Biosci. Bioeng. 114(3), 2012
PMID: 22608549
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology?
Schlüter, J. Biotechnol. 136(1–2), 2008
Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation.
Shimizu S, Ueno A, Tamamura S, Naganuma T, Kaneko K., Int. J. Syst. Evol. Microbiol. 63(Pt 11), 2013
PMID: 23832970
Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics.
Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN., J. Bacteriol. 179(22), 1997
PMID: 9371463
Developmental effects of a municipal wastewater effluent on two generations of the fathead minnow, Pimephales promelas.
Sowers AD, Gaworecki KM, Mills MA, Roberts AP, Klaine SJ., Aquat. Toxicol. 95(3), 2009
PMID: 19850365
Techniques for anaerobic growth
Sowers, 1995
N epsilon-acetyl-beta-lysine: an osmolyte synthesized by methanogenic archaebacteria.
Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF., Proc. Natl. Acad. Sci. U.S.A. 87(23), 1990
PMID: 2123548
Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium.
Stantscheff R, Kuever J, Rabenstein A, Seyfarth K, Droge S, Konig H., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24639207
Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii.
Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhophadhyay B, Blankenship RE., J. Bacteriol. 189(20), 2007
PMID: 17660283
K+ circulation across the prokaryotic cell membrane: K+ uptake systems
Stumpe, 1996
Methanogenic archaea: ecologically relevant differences in energy conservation.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R., Nat. Rev. Microbiol. 6(8), 2008
PMID: 18587410
Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil.
Tian J, Wang Y, Dong X., Int. J. Syst. Evol. Microbiol. 60(Pt 9), 2009
PMID: 19897615
Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant.
Weiss A, Jerome V, Burghardt D, Likke L, Peiffer S, Hofstetter EM, Gabler R, Freitag R., Appl. Microbiol. Biotechnol. 84(5), 2009
PMID: 19618178
Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid.
Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, Setubal JC, Schmitt R, Puhler A, Schluter A., J. Biotechnol. 155(1), 2011
PMID: 21329740
Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.
Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL., Biotechnol Biofuels 5(), 2012
PMID: 22673110
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A., J. Biotechnol. 158(4), 2012
PMID: 22342600
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25455016
PubMed | Europe PMC

Suchen in

Google Scholar