Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount

Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, Emerson D (2015)
The ISME journal 9: 857-870.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
The Zetaproteobacteria are a candidate class of marine iron-oxidizing bacteria that are typically found in high iron environments such as hydrothermal vent sites. As much remains unknown about these organisms due to difficulties in cultivation, single-cell genomics was used to learn more about this elusive group at Loihi Seamount. Comparative genomics of 23 phylogenetically diverse single amplified genomes (SAGs) and two isolates indicate niche specialization among the Zetaproteobacteria may be largely due to oxygen tolerance and nitrogen transformation capabilities. Only Form II ribulose 1,5-bisphosphate carboxylase (RubisCO) genes were found in the SAGs, suggesting that some of the uncultivated Zetaproteobacteria may be adapted to low oxygen and/or high carbon dioxide concentrations. There is also genomic evidence of oxygen-tolerant cytochrome c oxidases and oxidative stress-related genes, indicating that others may be exposed to higher oxygen conditions. The Zetaproteobacteria also have the genomic potential for acquiring nitrogen from numerous sources including ammonium, nitrate, organic compounds, and nitrogen gas. Two types of molybdopterin oxidoreductase genes were found in the SAGs, indicating that those found in the isolates, thought to be involved in iron oxidation, are not consistent among all the Zetaproteobacteria. However, a novel cluster of redox-related genes was found to be conserved in 10 SAGs as well as in the isolates warranting further investigation. These results were used to isolate a novel iron-oxidizing Zetaproteobacteria. Physiological studies and genomic analysis of this isolate were able to support many of the findings from SAG analyses demonstrating the value of these data for designing future enrichment strategies.
Erscheinungsjahr
Zeitschriftentitel
The ISME journal
Band
9
Seite(n)
857-870
ISSN
PUB-ID

Zitieren

Field EK, Sczyrba A, Lyman AE, et al. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. The ISME journal. 2015;9:857-870.
Field, E. K., Sczyrba, A., Lyman, A. E., Harris, C. C., Woyke, T., Stepanauskas, R., & Emerson, D. (2015). Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. The ISME journal, 9, 857-870. doi:10.1038/ismej.2014.183
Field, E. K., Sczyrba, A., Lyman, A. E., Harris, C. C., Woyke, T., Stepanauskas, R., and Emerson, D. (2015). Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. The ISME journal 9, 857-870.
Field, E.K., et al., 2015. Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. The ISME journal, 9, p 857-870.
E.K. Field, et al., “Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount”, The ISME journal, vol. 9, 2015, pp. 857-870.
Field, E.K., Sczyrba, A., Lyman, A.E., Harris, C.C., Woyke, T., Stepanauskas, R., Emerson, D.: Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount. The ISME journal. 9, 857-870 (2015).
Field, Erin K., Sczyrba, Alexander, Lyman, Audrey E., Harris, Christopher C., Woyke, Tanja, Stepanauskas, Ramunas, and Emerson, David. “Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount”. The ISME journal 9 (2015): 857-870.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives.
McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS., FEMS Microbiol Ecol 95(4), 2019
PMID: 30715272
Is It First the Egg or the Shrimp? - Diversity and Variation in Microbial Communities Colonizing Broods of the Vent Shrimp Rimicaris exoculata During Embryonic Development.
Methou P, Hernández-Ávila I, Aube J, Cueff-Gauchard V, Gayet N, Amand L, Shillito B, Pradillon F, Cambon-Bonavita MA., Front Microbiol 10(), 2019
PMID: 31057515
Biological rejuvenation of iron oxides in bioturbated marine sediments.
Beam JP, Scott JJ, McAllister SM, Chan CS, McManus J, Meysman FJR, Emerson D., ISME J 12(5), 2018
PMID: 29343830
Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution.
Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, Pan Y., ISME J 12(6), 2018
PMID: 29581530
Insights into the Fundamental Physiology of the Uncultured Fe-Oxidizing Bacterium Leptothrix ochracea.
Fleming EJ, Woyke T, Donatello RA, Kuypers MMM, Sczyrba A, Littmann S, Emerson D., Appl Environ Microbiol 84(9), 2018
PMID: 29453262
Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone.
Chiu BK, Kato S, McAllister SM, Field EK, Chan CS., Front Microbiol 8(), 2017
PMID: 28769885
Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc.
Hager KW, Fullerton H, Butterfield DA, Moyer CL., Front Microbiol 8(), 2017
PMID: 28970817
Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level.
Chen Z, Chen L, Zhang W., Front Microbiol 8(), 2017
PMID: 28979258
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Dang H, Lovell CR., Microbiol Mol Biol Rev 80(1), 2016
PMID: 26700108
Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions.
Field EK, Kato S, Findlay AJ, MacDonald DJ, Chiu BK, Luther GW, Chan CS., Geobiology 14(5), 2016
PMID: 27384464
Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan.
Hoshino T, Kuratomi T, Morono Y, Hori T, Oiwane H, Kiyokawa S, Inagaki F., Front Microbiol 6(), 2015
PMID: 26793184
Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population.
Labonté JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, Kieft TL, Onstott TC, Stepanauskas R., Front Microbiol 6(), 2015
PMID: 25954269
New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph.
Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, Zhong JD, Edwards KJ., Appl Environ Microbiol 81(17), 2015
PMID: 26092463
Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs.
Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, Young MJ., Appl Environ Microbiol 81(22), 2015
PMID: 26341207
Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria.
Kato S, Ohkuma M, Powell DH, Krepski ST, Oshima K, Hattori M, Shapiro N, Woyke T, Chan CS., Front Microbiol 6(), 2015
PMID: 26617599
Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment.
Laufer K, Nordhoff M, Røy H, Schmidt C, Behrens S, Jørgensen BB, Kappler A., Appl Environ Microbiol 82(5), 2015
PMID: 26682861

57 References

Daten bereitgestellt von Europe PubMed Central.

Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways.
Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB., Microbiology (Reading, Engl.) 157(Pt 1), 2010
PMID: 20884692
The cytochrome bd respiratory oxygen reductases.
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI., Biochim. Biophys. Acta 1807(11), 2011
PMID: 21756872
Oxidative stress in bacteria and protein damage by reactive oxygen species
AUTHOR UNKNOWN, 2010
Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters.
Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG., Environ. Microbiol. 13(11), 2011
PMID: 21951343
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions.
Deutscher J, Ake FM, Derkaoui M, Zebre AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P., Microbiol. Mol. Biol. Rev. 78(2), 2014
PMID: 24847021
Enrichment and isolation of iron-oxidizing bacteria at neutral pH.
Emerson D, Floyd MM., Meth. Enzymol. 397(), 2005
PMID: 16260287
Microbiology of seamounts: common patterns observed in community structure
AUTHOR UNKNOWN, 2010
Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics.
Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T., Front Microbiol 4(), 2013
PMID: 24062729
Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA.
Fleming EJ, Davis RE, McAllister SM, Chan CS, Moyer CL, Tebo BM, Emerson D., FEMS Microbiol. Ecol. 85(1), 2013
PMID: 23480633
Geology, geochemistry and earthquake history of Loihi Seamount, Hawaìi's youngest volcano
AUTHOR UNKNOWN, 2006
Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton.
Garcia SL, McMahon KD, Martinez-Garcia M, Srivastava A, Sczyrba A, Stepanauskas R, Grossart HP, Woyke T, Warnecke F., ISME J 7(1), 2012
PMID: 22810059
Redox speciation and distribution within diverse iron-dominated microbial habitats at Loihi Seamount
AUTHOR UNKNOWN, 2009
Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges.
Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, Woyke T, Hentschel U., ISME J 7(12), 2013
PMID: 23842652
Loihi Seamount, Hawaii: a mid-plate volcano with a distinctive hydrothermal system
AUTHOR UNKNOWN, 1988
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.
Katoh K, Misawa K, Kuma K, Miyata T., Nucleic Acids Res. 30(14), 2002
PMID: 12136088
Towards a genome-based taxonomy for prokaryotes.
Konstantinidis KT, Tiedje JM., J. Bacteriol. 187(18), 2005
PMID: 16159757
The bacterial species definition in the genomic era
AUTHOR UNKNOWN, 2006
Microbial nitrate respiration--genes, enzymes and environmental distribution.
Kraft B, Strous M, Tegetmeyer HE., J. Biotechnol. 155(1), 2011
PMID: 21219945
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
Kumar S, Nei M, Dudley J, Tamura K., Brief. Bioinformatics 9(4), 2008
PMID: 18417537
ARB: a software environment for sequence data.
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH., Nucleic Acids Res. 32(4), 2004
PMID: 14985472
Bacterial nitrate assimilation: gene distribution and regulation
AUTHOR UNKNOWN, 2011
Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria.
McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL., Appl. Environ. Microbiol. 77(15), 2011
PMID: 21666021
Neutrophilic iron-oxidizing "zetaproteobacteria" and mild steel corrosion in nearshore marine environments.
McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D., Appl. Environ. Microbiol. 77(4), 2010
PMID: 21131509
Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases.
Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F., J. Bacteriol. 181(21), 1999
PMID: 10542156
The bacterial cytochrome cbb oxidases
AUTHOR UNKNOWN, 2004
Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study.
Podar M, Eads JR, Richardson TH., BMC Evol. Biol. 5(), 2005
PMID: 16083508
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO., Nucleic Acids Res. 35(21), 2007
PMID: 17947321
Zeta-proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii
AUTHOR UNKNOWN, 2009
Shifting the genomic gold standard for the prokaryotic species definition.
Richter M, Rossello-Mora R., Proc. Natl. Acad. Sci. U.S.A. 106(45), 2009
PMID: 19855009
Insights into the phylogeny and coding potential of microbial dark matter.
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T., Nature 499(7459), 2013
PMID: 23851394
Chemistry of hydrothermal solutions from Pele's vents, Loihi Seamount, Hawaii
AUTHOR UNKNOWN, 1992
Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1.
Shi L, Rosso KM, Clarke TA, Richardson DJ, Zachara JM, Fredrickson JK., Front Microbiol 3(), 2012
PMID: 22363328
Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium.
Singer E, Emerson D, Webb EA, Barco RA, Kuenen JG, Nelson WC, Chan CS, Comolli LR, Ferriera S, Johnson J, Heidelberg JF, Edwards KJ., PLoS ONE 6(9), 2011
PMID: 21966516
Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at Lo´ihi, Hawai´l.
Singer E, Heidelberg JF, Dhillon A, Edwards KJ., Front Microbiol 4(), 2013
PMID: 23518919
Characterization of cytochrome 579, an unusual cytochrome isolated from an iron-oxidizing microbial community.
Singer SW, Chan CS, Zemla A, VerBerkmoes NC, Hwang M, Hettich RL, Banfield JF, Thelen MP., Appl. Environ. Microbiol. 74(14), 2008
PMID: 18469132
The bacterial species dilemma and the genomic–phylogenetic species concept
AUTHOR UNKNOWN, 2006
Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time.
Stepanauskas R, Sieracki ME., Proc. Natl. Acad. Sci. U.S.A. 104(21), 2007
PMID: 17502618
Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean.
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ, Stepanauskas R., Science 333(6047), 2011
PMID: 21885783
Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean.
Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, Gonzalez JM, Luo H, Wright JJ, Landry ZC, Hanson NW, Thompson BP, Poulton NJ, Schwientek P, Acinas SG, Giovannoni SJ, Moran MA, Hallam SJ, Cavicchioli R, Woyke T, Stepanauskas R., Proc. Natl. Acad. Sci. U.S.A. 110(28), 2013
PMID: 23801761
Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction.
Weber KA, Achenbach LA, Coates JD., Nat. Rev. Microbiol. 4(10), 2006
PMID: 16980937
Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer.
Wilkins MJ, Kennedy DW, Castelle CJ, Field EK, Stepanauskas R, Fredrickson JK, Konopka AE., Microbiology (Reading, Engl.) 160(Pt 2), 2013
PMID: 24324032
Assembling the marine metagenome, one cell at a time.
Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji S, Cheng JF, Eisen JA, Sieracki ME, Stepanauskas R., PLoS ONE 4(4), 2009
PMID: 19390573
Decontamination of MDA reagents for single cell whole genome amplification.
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF., PLoS ONE 6(10), 2011
PMID: 22028825
Isolation and characterization of a new facultatively autotrophic hydrogen-oxidizing Betaproteobacterium, Hydrogenophaga sp. AH-24.
Yoon KS, Tsukada N, Sakai Y, Ishii M, Igarashi Y, Nishihara H., FEMS Microbiol. Lett. 278(1), 2007
PMID: 18031533

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25303714
PubMed | Europe PMC

Suchen in

Google Scholar