The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells

Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T (2015)
Journal of Biotechnology 199: 38-46.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Chinese hamster ovary (CHO) cells represent the most commonly used production cell line for therapeutic proteins. By recent genome and transcriptome sequencing a basis was created for future investigations of genotype-phenotype relationships and for improvement of CHO cell productivity and product quality. In this context information is missing about DNA cytosine methylation as a crucial epigenetic modification and an important element in mammalian genome regulation and development. Here, we present the first DNA methylation map of a CHO cell line in single-base resolution that was generated by whole genome bisulfite sequencing combined with gene expression analysis by CHO microarrays. We show CHO DP-12 cells to exhibit global hypomethylation compared to a majority of mammalian methylomes and hypermethylation of CpG-dense regions at gene promoters called CpG islands. We also observed partially methylated domains that cover 62% of the CHO DP-12 cell genome and contain functional clusters of genes. Gene expression analysis showed these clusters to be either highly or weakly expressed with regard to CHO-specific characteristics and hence proves DNA methylation in CHO cells to be an important link between genomics and transcriptomics.
Stichworte
CHO; Epigenetics; DNA methylation; Whole genome bisulfite sequencing; Gene expression
Erscheinungsjahr
2015
Zeitschriftentitel
Journal of Biotechnology
Band
199
Seite(n)
38-46
ISSN
0168-1656
eISSN
1873-4863
Page URI
https://pub.uni-bielefeld.de/record/2718773

Zitieren

Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. Journal of Biotechnology. 2015;199:38-46.
Wippermann, A., Rupp, O., Brinkrolf, K., Hoffrogge, R., & Noll, T. (2015). The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. Journal of Biotechnology, 199, 38-46. doi:10.1016/j.jbiotec.2015.01.014
Wippermann, Anna, Rupp, Oliver, Brinkrolf, Karina, Hoffrogge, Raimund, and Noll, Thomas. 2015. “The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells”. Journal of Biotechnology 199: 38-46.
Wippermann, A., Rupp, O., Brinkrolf, K., Hoffrogge, R., and Noll, T. (2015). The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. Journal of Biotechnology 199, 38-46.
Wippermann, A., et al., 2015. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. Journal of Biotechnology, 199, p 38-46.
A. Wippermann, et al., “The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells”, Journal of Biotechnology, vol. 199, 2015, pp. 38-46.
Wippermann, A., Rupp, O., Brinkrolf, K., Hoffrogge, R., Noll, T.: The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. Journal of Biotechnology. 199, 38-46 (2015).
Wippermann, Anna, Rupp, Oliver, Brinkrolf, Karina, Hoffrogge, Raimund, and Noll, Thomas. “The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells”. Journal of Biotechnology 199 (2015): 38-46.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Optimization of Protein Expression in Mammalian Cells.
Hunter M, Yuan P, Vavilala D, Fox M., Curr Protoc Protein Sci 95(1), 2019
PMID: 30265450
CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
Stolfa G, Smonskey MT, Boniface R, Hachmann AB, Gulde P, Joshi AD, Pierce AP, Jacobia SJ, Campbell A., Biotechnol J 13(3), 2018
PMID: 29072373
Antibody expression stability in CHO clonally derived cell lines and their subclones: Role of methylation in phenotypic and epigenetic heterogeneity.
Patel NA, Anderson CR, Terkildsen SE, Davis RC, Pack LD, Bhargava S, Clarke HRG., Biotechnol Prog 34(3), 2018
PMID: 29717549
CRISPR-Based Targeted Epigenetic Editing Enables Gene Expression Modulation of the Silenced Beta-Galactoside Alpha-2,6-Sialyltransferase 1 in CHO Cells.
Marx N, Grünwald-Gruber C, Bydlinski N, Dhiman H, Ngoc Nguyen L, Klanert G, Borth N., Biotechnol J 13(10), 2018
PMID: 29802757
Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells.
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T., J Biotechnol 257(), 2017
PMID: 27890772
Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells.
Kelly PS, Clarke C, Costello A, Monger C, Meiller J, Dhiman H, Borth N, Betenbaugh MJ, Clynes M, Barron N., Metab Eng 41(), 2017
PMID: 28188893
The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells.
Wang X, Xu Z, Tian Z, Zhang X, Xu D, Li Q, Zhang J, Wang T., J Cell Mol Med 21(11), 2017
PMID: 28557288
Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells.
Wang W, Jia YL, Li YC, Jing CQ, Guo X, Shang XF, Zhao CP, Wang TY., Sci Rep 7(1), 2017
PMID: 28874794
Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time.
Feichtinger J, Hernández I, Fischer C, Hanscho M, Auer N, Hackl M, Jadhav V, Baumann M, Krempl PM, Schmidl C, Farlik M, Schuster M, Merkel A, Sommer A, Heath S, Rico D, Bock C, Thallinger GG, Borth N., Biotechnol Bioeng 113(10), 2016
PMID: 27072894
Towards next generation CHO cell biology: Bioinformatics methods for RNA-Seq-based expression profiling.
Monger C, Kelly PS, Gallagher C, Clynes M, Barron N, Clarke C., Biotechnol J 10(7), 2015
PMID: 26058739
CMV promoter mutants with a reduced propensity to productivity loss in CHO cells.
Moritz B, Becker PB, Göpfert U., Sci Rep 5(), 2015
PMID: 26581326

56 References

Daten bereitgestellt von Europe PubMed Central.


Andrews, 2010
Toward product attribute control: developments from genome sequencing
Baik, Curr. Opin. Biotechnol. 30C(), 2014
The impact of intragenic CpG content on gene expression.
Bauer AP, Leikam D, Krinner S, Notka F, Ludwig C, Langst G, Wagner R., Nucleic Acids Res. 38(12), 2010
PMID: 20203083
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini, J. R. Stat. Soc. Ser. B: Stat. Methodol. 57(), 1995
Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains
Berman, Nat. Genet. 44(), 2012
Notes on the role of dynamic DNA methylation in mammalian development
Bestor, Proc. Natl. Acad. Sci. U. S. A. (), 2014
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Chinese hamster genome sequenced from sorted chromosomes.
Brinkrolf K, Rupp O, Laux H, Kollin F, Ernst W, Linke B, Kofler R, Romand S, Hesse F, Budach WE, Galosy S, Muller D, Noll T, Wienberg J, Jostock T, Leonard M, Grillari J, Tauch A, Goesmann A, Helk B, Mott JE, Puhler A, Borth N., Nat. Biotechnol. 31(8), 2013
PMID: 23929341
Proteomic profiling of a high-producing Chinese hamster ovary cell culture.
Carlage T, Hincapie M, Zang L, Lyubarskaya Y, Madden H, Mhatre R, Hancock WS., Anal. Chem. 81(17), 2009
PMID: 19663468
CpG islands and the regulation of transcription.
Deaton AM, Bird A., Genes Dev. 25(10), 2011
PMID: 21576262
DNA methylation profiling of human chromosomes 6, 20 and 22.
Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S., Nat. Genet. 38(12), 2006
PMID: 17072317
Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts
Ferretti, Hum. Reprod. Update 13(), 2006
DNA sequence explains seemingly disordered methylation levels in partially methylated domains of Mammalian genomes.
Gaidatzis D, Burger L, Murr R, Lerch A, Dessus-Babus S, Schubeler D, Stadler MB., PLoS Genet. 10(2), 2014
PMID: 24550741
The molecular basis for calcium-dependent axon pathfinding.
Gomez TM, Zheng JQ., Nat. Rev. Neurosci. 7(2), 2006
PMID: 16429121
DNA modification mechanisms and gene activity during development.
Holliday R, Pugh JE., Science 187(4173), 1975
PMID: 1111098
Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer.
Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, Camargo AA, Stevenson BJ, Ecker JR, Bafna V, Strausberg RL, Simpson AJ, Ren B., Genome Res. 22(2), 2011
PMID: 22156296
Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma
Hu, Clin. Cancer Res. (), 2015
Extracting biological meaning from large gene lists with DAVID
Huang, Curr. Protoc. Bioinform. (), 2009
Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine).
Huang YZ, Sun JJ, Zhang LZ, Li CJ, Womack JE, Li ZJ, Lan XY, Lei CZ, Zhang CL, Zhao X, Chen H., Sci Rep 4(), 2014
PMID: 25306978
CpG islands--'a rough guide'.
Illingworth RS, Bird AP., FEBS Lett. 583(11), 2009
PMID: 19376112
On the presence and role of human gene-body DNA methylation.
Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK., Oncotarget 3(4), 2012
PMID: 22577155
A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies.
Kim M, O'Callaghan PM, Droms KA, James DC., Biotechnol. Bioeng. 108(10), 2011
PMID: 21538334
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
Dynamic changes in the human methylome during differentiation.
Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL., Genome Res. 20(3), 2010
PMID: 20133333
Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome.
Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO., Nat. Biotechnol. 31(8), 2013
PMID: 23873082
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
Human DNA methylomes at base resolution show widespread epigenomic differences.
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR., Nature 462(7271), 2009
PMID: 19829295
Reduced BMP6 expression by DNA methylation contributes to EMT and drug resistance in breast cancer cells.
Liu G, Liu YJ, Lian WJ, Zhao ZW, Yi T, Zhou HY., Oncol. Rep. 32(2), 2014
PMID: 24890613
Genome-scale DNA methylation maps of pluripotent and differentiated cells.
Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES., Nature 454(7205), 2008
PMID: 18600261
Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype.
Meleady P, Doolan P, Henry M, Barron N, Keenan J, O'Sullivan F, Clarke C, Gammell P, Melville MW, Leonard M, Clynes M., BMC Biotechnol. 11(), 2011
PMID: 21781345
Exposing the DNA methylome iceberg.
Ndlovu MN, Denis H, Fuks F., Trends Biochem. Sci. 36(7), 2011
PMID: 21497094
Transcriptome and proteome profiling to understanding the biology of high productivity CHO cells.
Nissom PM, Sanny A, Kok YJ, Hiang YT, Chuah SH, Shing TK, Lee YY, Wong KT, Hu WS, Sim MY, Philp R., Mol. Biotechnol. 34(2), 2006
PMID: 17172658
Interplay of microRNA and epigenetic regulation in the human regulatory network.
Osella M, Riba A, Testori A, Cora D, Caselle M., Front Genet 5(), 2014
PMID: 25339974
DNA hypomethylation can activate Xist expression and silence X-linked genes.
Panning B, Jaenisch R., Genes Dev. 10(16), 1996
PMID: 8769643
X inactivation, differentiation, and DNA methylation
Riggs, Cytogenet. Genome Res. 14(), 1975
Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers.
Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, Lantuejoul S, Hainaut P, Laffaire J, de Reynies A, Beer DG, Timsit JF, Brambilla C, Brambilla E, Khochbin S., Sci Transl Med 5(186), 2013
PMID: 23698379
Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines.
Rupp O, Becker J, Brinkrolf K, Timmermann C, Borth N, Puhler A, Noll T, Goesmann A., PLoS ONE 9(1), 2014
PMID: 24427317
The human placenta methylome.
Schroeder DI, Blair JD, Lott P, Yu HO, Hong D, Crary F, Ashwood P, Walker C, Korf I, Robinson WP, LaSalle JM., Proc. Natl. Acad. Sci. U.S.A. 110(15), 2013
PMID: 23530188
Large-scale methylation domains mark a functional subset of neuronally expressed genes.
Schroeder DI, Lott P, Korf I, LaSalle JM., Genome Res. 21(10), 2011
PMID: 21784875

Smyth, 2005
A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics.
Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD., PLoS ONE 8(12), 2013
PMID: 24324667
Genomic insights into cancer-associated aberrant CpG island hypermethylation.
Sproul D, Meehan RR., Brief Funct Genomics 12(3), 2013
PMID: 23341493
DNA-binding factors shape the mouse methylome at distal regulatory regions.
Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D., Nature 480(7378), 2011
PMID: 22170606
Histone core modifications regulating nucleosome structure and dynamics.
Tessarz P, Kouzarides T., Nat. Rev. Mol. Cell Biol. 15(11), 2014
PMID: 25315270
Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.
Tokuda E, Itoh T, Hasegawa J, Ijuin T, Takeuchi Y, Irino Y, Fukumoto M, Takenawa T., Cancer Res. 74(11), 2014
PMID: 24706697
Transcription of IAP endogenous retroviruses is constrained by cytosine methylation.
Walsh CP, Chaillet JR, Bestor TH., Nat. Genet. 20(2), 1998
PMID: 9771701
Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells
Wippermann, Appl. Microbiol. Biotechnol. 98(), 2013
The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line.
Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J., Nat. Biotechnol. 29(8), 2011
PMID: 21804562
DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines.
Yang Y, Mariati , Chusainow J, Yap MG., J. Biotechnol. 147(3-4), 2010
PMID: 20430058
Charting a dynamic DNA methylation landscape of the human genome.
Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A., Nature 500(7463), 2013
PMID: 23925113
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25701679
PubMed | Europe PMC

Suchen in

Google Scholar