2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects

Wingens M, Gätgens J, Schmidt A, Albaum S, Büntemeyer H, Noll T, Hoffrogge R (2015)
Journal of Biotechnology 201: 86-97.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Wingens, Marc; Gätgens, Jochem; Schmidt, Anica; Albaum, StefanUniBi ; Büntemeyer, HeinoUniBi; Noll, ThomasUniBi ; Hoffrogge, RaimundUniBi
Abstract / Bemerkung
CHO derivates (Chinese hamster ovary) belong to the most important mammalian cells for industrial recombinant protein production. Many efforts have been made to improve productivity and stability of CHO- cells in bioreactor processes. Here, we followed up one barely understood phenomenon observed with process optimizations: a significantly increased cell -specific productivity in late phases of glucose-limited perfusion cultivations, when glucose (and lactate) reserves are exhausted. Our aim was to elucidate the cellular activities connected to the metabolic shift from glucose surplus to glucose limitation phase. With 2D-DIGE, we compared three stages in a perfusion culture of CHO cells: the initial growth with high glucose concentration and low lactate production, the second phase with glucose going to limitation and high lactate level, and finally the state of glucose limitation and also low lactate concentration but increased cell -specific productivity. With our proteomic approach we were able to demonstrate consequences of glucose limitation for the protein expression machinery which also could play a role for a higher recombinant protein production. Most interestingly, we detected epigenetic effects on the level of proteins involved in histone modification (HDAC1/-2, SET, RBBP7, DDX5). Together with shifts in the protein inventory of energy metabolism, cytoskeleton and protein- expression, a picture emerges of basic changes in the cellular equipment under long-term glucose limitation of CHO cells.
Glucose limitation; Continuous cultivation; Chinese hamster ovary (CHO) cells; Recombinant protein production; Metabolic shift; Histone modification
Journal of Biotechnology
0168-1656, 1873-4863
Page URI


Wingens M, Gätgens J, Schmidt A, et al. 2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects. Journal of Biotechnology. 2015;201:86-97.
Wingens, M., Gätgens, J., Schmidt, A., Albaum, S., Büntemeyer, H., Noll, T., & Hoffrogge, R. (2015). 2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects. Journal of Biotechnology, 201, 86-97. doi:10.1016/j.jbiotec.2014.01.005
Wingens, M., Gätgens, J., Schmidt, A., Albaum, S., Büntemeyer, H., Noll, T., and Hoffrogge, R. (2015). 2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects. Journal of Biotechnology 201, 86-97.
Wingens, M., et al., 2015. 2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects. Journal of Biotechnology, 201, p 86-97.
M. Wingens, et al., “2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects”, Journal of Biotechnology, vol. 201, 2015, pp. 86-97.
Wingens, M., Gätgens, J., Schmidt, A., Albaum, S., Büntemeyer, H., Noll, T., Hoffrogge, R.: 2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects. Journal of Biotechnology. 201, 86-97 (2015).
Wingens, Marc, Gätgens, Jochem, Schmidt, Anica, Albaum, Stefan, Büntemeyer, Heino, Noll, Thomas, and Hoffrogge, Raimund. “2D-DIGE screening of high-productive CHO cells under glucose limitation — Basic changes in the proteome equipment and hints for epigenetic effects”. Journal of Biotechnology 201 (2015): 86-97.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
Stolfa G, Smonskey MT, Boniface R, Hachmann AB, Gulde P, Joshi AD, Pierce AP, Jacobia SJ, Campbell A., Biotechnol J 13(3), 2018
PMID: 29072373
Exploring cellular behavior under transient gene expression and its impact on mAb productivity and Fc-glycosylation.
Sou SN, Lee K, Nayyar K, Polizzi KM, Sellick C, Kontoravdi C., Biotechnol Bioeng 115(2), 2018
PMID: 28921534
Label-free protein quantification of sodium butyrate treated CHO cells by ESI-UHR-TOF-MS.
Müller B, Heinrich C, Jabs W, Kaspar-Schönefeld S, Schmidt A, Rodrigues de Carvalho N, Albaum SP, Baessmann C, Noll T, Hoffrogge R., J Biotechnol 257(), 2017
PMID: 28363874
Proteomic differences in recombinant CHO cells producing two similar antibody fragments.
Sommeregger W, Mayrhofer P, Steinfellner W, Reinhart D, Henry M, Clynes M, Meleady P, Kunert R., Biotechnol Bioeng 113(9), 2016
PMID: 26913574

87 References

Daten bereitgestellt von Europe PubMed Central.

Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells.
Backstrom M, Link T, Olson FJ, Karlsson H, Graham R, Picco G, Burchell J, Taylor-Papadimitriou J, Noll T, Hansson GC., Biochem. J. 376(Pt 3), 2003
PMID: 12950230
Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration.
Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ., BMC Biol. 9(), 2011
PMID: 21834987
Proteomic analysis of Chinese hamster ovary cells.
Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J, Jacobson E, Tian Y, O'Meally RN, Krag SS, Cole RN, Palsson BO, Zhang H, Betenbaugh M., J. Proteome Res. 11(11), 2012
PMID: 22971049
Next-generation sequencing of the CHO cell transcriptome
Becker, BMC Proc. 5(Suppl. 8), 2011
Cell cycle-related changes in F-actin distribution are correlated with glycolytic activity.
Bereiter-Hahn J, Stubig C, Heymann V., Exp. Cell Res. 218(2), 1995
PMID: 7796889
The mammalian epigenome.
Bernstein BE, Meissner A, Lander ES., Cell 128(4), 2007
PMID: 17320505
Multiple significance tests: the Bonferroni method.
Bland JM, Altman DG., BMJ 310(6973), 1995
PMID: 7833759
Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels
Blum, Electrophoresis 8(2), 1987
A quantitative approach to metabolic control.
Crabtree B, Newsholme EA., Curr. Top. Cell. Regul. 25(), 1985
PMID: 3893903
Eloquent silence: developmental functions of Class I histone deacetylases.
Cunliffe VT., Curr. Opin. Genet. Dev. 18(5), 2008
PMID: 18929655
Functional proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate.
Dinnis DM, Stansfield SH, Schlatter S, Smales CM, Alete D, Birch JR, Racher AJ, Marshall CT, Nielsen LK, James DC., Biotechnol. Bioeng. 94(5), 2006
PMID: 16489627
The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s.
Easton DP, Kaneko Y, Subjeck JR., Cell Stress Chaperones 5(4), 2000
PMID: 11048651
Cluster analysis and display of genome-wide expression patterns.
Eisen MB, Spellman PT, Brown PO, Botstein D., Proc. Natl. Acad. Sci. U.S.A. 95(25), 1998
PMID: 9843981
A method for two-dimensional electrophoresis of proteins from green plant tissues.
Flengsrud R, Kobro G., Anal. Biochem. 177(1), 1989
PMID: 2742151
Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.
Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M., Nat. Genet. 37(4), 2005
PMID: 15765097
Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1.
Fucini RV, Chen JL, Sharma C, Kessels MM, Stamnes M., Mol. Biol. Cell 13(2), 2002
PMID: 11854417
Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates.
Glacken MW, Adema E, Sinskey AJ., Biotechnol. Bioeng. 32(4), 1988
PMID: 18587747
Eukaryotic cytosine methyltransferases.
Goll MG, Bestor TH., Annu. Rev. Biochem. 74(), 2005
PMID: 15952895
Advancing mammalian cell culture engineering using genome-scale technologies.
Griffin TJ, Seth G, Xie H, Bandhakavi S, Hu WS., Trends Biotechnol. 25(9), 2007
PMID: 17681628
Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signaling in normal and cancer cells
Guy, Electrophoresis 15(3–4), 1994
Energetics of glutaminolysis—a theoretical evaluation
Häggström, 1991
Genomic sequencing and analysis of a Chinese hamster ovary cell line using Illumina sequencing technology.
Hammond S, Swanberg JC, Kaplarevic M, Lee KH., BMC Genomics 12(), 2011
PMID: 21269493
2-DE profiling of GDNF overexpression-related proteome changes in differentiating ST14A rat progenitor cells.
Hoffrogge R, Beyer S, Hubner R, Mikkat S, Mix E, Scharf C, Schmitz U, Pauleweit S, Berth M, Zubrzycki IZ, Christoph H, Pahnke J, Wolkenhauer O, Uhrmacher A, Volker U, Rolfs A., Proteomics 7(1), 2007
PMID: 17146836
High-resolution two-dimensional electrophoresis of plant proteins.
Holloway PJ, Arundel PH., Anal. Biochem. 172(1), 1988
PMID: 3189777
Sample size and replication in 2D gel electrophoresis studies.
Horgan GW., J. Proteome Res. 6(7), 2007
PMID: 17550277
Epigenetics in breast cancer: what's new?
Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S., Breast Cancer Res. 13(6), 2011
PMID: 22078060
Optimal replication and the importance of experimental design for gel-based quantitative proteomics.
Hunt SM, Thomas MR, Sebastian LT, Pedersen SK, Harcourt RL, Sloane AJ, Wilkins MR., J. Proteome Res. 4(3), 2005
PMID: 15952727
Epigenetic changes in cancer.
Iacobuzio-Donahue CA., Annu Rev Pathol 4(), 2009
PMID: 18840073
Impact of replicate types on proteomic expression analysis.
Karp NA, Spencer M, Lindsay H, O'Dell K, Lilley KS., J. Proteome Res. 4(5), 2005
PMID: 16212444
A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies.
Kim M, O'Callaghan PM, Droms KA, James DC., Biotechnol. Bioeng. 108(10), 2011
PMID: 21538334
Histone deacetylase inhibitors for cancer therapy.
Kim TY, Bang YJ, Robertson KD., Epigenetics 1(1), 2006
PMID: 17998811
Association of glycolytic enzymes with the cytoskeleton.
Knull HR, Walsh JL., Curr. Top. Cell. Regul. 33(), 1992
PMID: 1499331
Large scale gene expression profiling of metabolic shift of mammalian cells in culture.
Korke R, Gatti Mde L, Lau AL, Lim JW, Seow TK, Chung MC, Hu WS., J. Biotechnol. 107(1), 2004
PMID: 14687967
Chromatin modifications and their function.
Kouzarides T., Cell 128(4), 2007
PMID: 17320507
Highly acidic C-terminal domain of pp32 is required for the interaction with histone chaperone, TAF-Ibeta.
Lee IS, Oh SM, Kim SM, Lee DS, Seo SB., Biol. Pharm. Bull. 29(12), 2006
PMID: 17142970
Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment.
De Leon Gatti M, Wlaschin KF, Nissom PM, Yap M, Hu WS., J. Biosci. Bioeng. 103(1), 2007
PMID: 17298905
Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium.
Link T, Backstrom M, Graham R, Essers R, Zorner K, Gatgens J, Burchell J, Taylor-Papadimitriou J, Hansson GC, Noll T., J. Biotechnol. 110(1), 2004
PMID: 15099905
Histone chaperones, a supporting role in the limelight
Loyola, Biochim. Biophys. Acta 1677(1–3), 2004
Comprehensive proteome expression profiling of undifferentiated versus differentiated neural stem cells from adult rat hippocampus.
Maurer MH, Feldmann RE Jr, Futterer CD, Butlin J, Kuschinsky W., Neurochem. Res. 29(6), 2004
PMID: 15176470
Proteomic profiling of recombinant cells from large-scale mammalian cell culture processes
Meleady, Cytotechnology 53(1–3), 2007
Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics.
Meleady P, Hoffrogge R, Henry M, Rupp O, Bort JH, Clarke C, Brinkrolf K, Kelly S, Muller B, Doolan P, Hackl M, Beckmann TF, Noll T, Grillari J, Barron N, Puhler A, Clynes M, Borth N., Biotechnol. Bioeng. 109(6), 2012
PMID: 22389098
Introduction to animal cell culture technology—past, present and future
Merten, Cytotechnology 50(1–3), 2006
ER chaperones in mammalian development and human diseases.
Ni M, Lee AS., FEBS Lett. 581(19), 2007
PMID: 17481612
Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation.
Omasa T, Higashiyama K, Shioya S, Suga K., Biotechnol. Bioeng. 39(5), 1992
PMID: 18600982

Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production.
Ozturk SS, Riley MR, Palsson BO., Biotechnol. Bioeng. 39(4), 1992
PMID: 18600963
Regulation of mammalian translation factors by nutrients.
Proud CG., Eur. J. Biochem. 269(22), 2002
PMID: 12423332
A trip to the ER: coping with stress.
Rutkowski DT, Kaufman RJ., Trends Cell Biol. 14(1), 2004
PMID: 14729177
TM4: a free, open-source system for microarray data management and analysis.
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J., BioTechniques 34(2), 2003
PMID: 12613259
Regulation of histone acetylation and transcription by nuclear protein pp32, a subunit of the INHAT complex.
Seo SB, Macfarlan T, McNamara P, Hong R, Mukai Y, Heo S, Chakravarti D., J. Biol. Chem. 277(16), 2002
PMID: 11830591
Engineering cells for cell culture bioprocessing--physiological fundamentals.
Seth G, Hossler P, Yee JC, Hu WS., Adv. Biochem. Eng. Biotechnol. 101(), 2006
PMID: 16989260
Molecular portrait of high productivity in recombinant NS0 cells.
Seth G, Philp RJ, Lau A, Jiun KY, Yap M, Hu WS., Biotechnol. Bioeng. 97(4), 2007
PMID: 17149768
Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate.
Smales CM, Dinnis DM, Stansfield SH, Alete D, Sage EA, Birch JR, Racher AJ, Marshall CT, James DC., Biotechnol. Bioeng. 88(4), 2004
PMID: 15459912
TOR signaling in invertebrates.
Soulard A, Cohen A, Hall MN., Curr. Opin. Cell Biol. 21(6), 2009
PMID: 19767189
SnapShot: mTOR signaling.
Soulard A, Hall MN., Cell 129(2), 2007
PMID: 17449000
Efficient mammalian protein synthesis requires an intact F-actin system.
Stapulionis R, Kolli S, Deutscher MP., J. Biol. Chem. 272(40), 1997
PMID: 9312103
Histone H4 acetylation dynamics determined by stable isotope labeling with amino acids in cell culture and mass spectrometry.
Su X, Zhang L, Lucas DM, Davis ME, Knapp AR, Green-Church KB, Marcucci G, Parthun MR, Byrd JC, Freitas MA., Anal. Biochem. 363(1), 2006
PMID: 17286952
2-D DIGE analysis of butyrate-treated HCT-116 cells after enrichment with heparin affinity chromatography.
Tan HT, Zubaidah RM, Tan S, Hooi SC, Chung MC., J. Proteome Res. 5(5), 2006
PMID: 16674099
Role of microtubules in the organization of the Golgi complex.
Thyberg J, Moskalewski S., Exp. Cell Res. 246(2), 1999
PMID: 9925741
Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.
Unlu M, Morgan ME, Minden JS., Electrophoresis 18(11), 1997
PMID: 9420172
Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase.
Verreault A, Kaufman PD, Kobayashi R, Stillman B., Curr. Biol. 8(2), 1998
PMID: 9427644
Biopharmaceutical benchmarks 2010.
Walsh G., Nat. Biotechnol. 28(9), 2010
PMID: 20829826
The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner.
Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV., BMC Mol. Biol. 5(), 2004
PMID: 15298701
Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells.
Wippermann A, Klausing S, Rupp O, Albaum SP, Buntemeyer H, Noll T, Hoffrogge R., Appl. Microbiol. Biotechnol. 98(2), 2013
PMID: 24146078
The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line.
Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J., Nat. Biotechnol. 29(8), 2011
PMID: 21804562
The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men.
Yang XJ, Seto E., Nat. Rev. Mol. Cell Biol. 9(3), 2008
PMID: 18292778
Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment.
Yee JC, de Leon Gatti M, Philp RJ, Yap M, Hu WS., Biotechnol. Bioeng. 99(5), 2008
PMID: 17929327

Zar, 1996
Alteration of mammalian cell metabolism by dynamic nutrient feeding.
Zhou W, Rehm J, Europa A, Hu WS., Cytotechnology 24(2), 1997
PMID: 22358650
The structure and regulation of vinculin.
Ziegler WH, Liddington RC, Critchley DR., Trends Cell Biol. 16(9), 2006
PMID: 16893648
Beginning and ending an actin filament: control at the barbed end.
Zigmond SH., Curr. Top. Dev. Biol. 63(), 2004
PMID: 15536016


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 25612871
PubMed | Europe PMC

Suchen in

Google Scholar