Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling

Piao H, Lachman M, Malfatti S, Sczyrba A, Knierim B, Auer M, Tringe SG, Mackie RI, Yeoman CJ, Hess M (2014)
Frontiers in Microbiology 5(307): 307.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Piao, Hailan; Lachman, Medora; Malfatti, Stephanie; Sczyrba, AlexanderUniBi ; Knierim, Bernhard; Auer, Manfred; Tringe, Susannah Green; Mackie, Roderick Ian; Yeoman, Carl James; Hess, Matthias
Abstract / Bemerkung
The rumen microbial ecosystem is known for its biomass-degrading and methane-producing phenotype. Fermentation of recalcitrant plant material, comprised of a multitude of interwoven fibers, necessitates the synergistic activity of diverse microbial taxonomic groups that inhabit the anaerobic rumen ecosystem. Although interspecies hydrogen (H2) transfer, a process during which bacterially generated H2 is transferred to methanogenic Archaea, has obtained significant attention over the last decades, the temporal variation of the different taxa involved in in situ biomass-degradation, H2 transfer and the methanogenesis process remains to be established. Here we investigated the temporal succession of microbial taxa and its effect on fiber composition during rumen incubation using 16S rRNA amplicon sequencing. Switchgrass filled nylon bags were placed in the rumen of a cannulated cow and collected at nine time points for DNA extraction and 16S pyrotag profiling. The microbial community colonizing the air-dried and non-incubated (0 h) switchgrass was dominated by members of the Bacilli (recruiting 63 of the pyrotag reads). During in situ incubation of the switchgrass, two major shifts in the community composition were observed: Bacilli were replaced within 30 min by members belonging to the Bacteroidia and Clostridia, which recruited 34 and 25 of the 16S rRNA reads generated, respectively. A second significant shift was observed after 16 h of rumen incubation, when members of the Spirochaetes and Fibrobacteria classes became more abundant in the fiber-adherent community. During the first 30 min of rumen incubation ~13 of the switchgrass dry matter was degraded, whereas little biomass degradation appeared to have occurred between 30 min and 4 h after the switchgrass was placed in the rumen. Interestingly, methanogenic members of the Euryarchaeota (i.e., Methanobacteria) increased up to 3-fold during this period of reduced biomass-degradation, with peak abundance just before rates of dry matter degradation increased again. We hypothesize that during this period microbial-mediated fibrolysis was temporarily inhibited until H2 was metabolized into CH4 by methanogens. Collectively, our results demonstrate the importance of inter-species interactions for the biomass-degrading and methane-producing phenotype of the rumen microbiome—both microbially facilitated processes with global significance.
Stichworte
cellulolytic bacteria; interspecies H2 transfer; methanogenic archaea; microbe-microbe interactions; rumen microbiology
Erscheinungsjahr
2014
Zeitschriftentitel
Frontiers in Microbiology
Band
5
Ausgabe
307
Seite(n)
307
ISSN
1664-302X
eISSN
1664-302X
Page URI
https://pub.uni-bielefeld.de/record/2685992

Zitieren

Piao H, Lachman M, Malfatti S, et al. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology. 2014;5(307):307.
Piao, H., Lachman, M., Malfatti, S., Sczyrba, A., Knierim, B., Auer, M., Tringe, S. G., et al. (2014). Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology, 5(307), 307. doi:10.3389/fmicb.2014.00307
Piao, Hailan, Lachman, Medora, Malfatti, Stephanie, Sczyrba, Alexander, Knierim, Bernhard, Auer, Manfred, Tringe, Susannah Green, Mackie, Roderick Ian, Yeoman, Carl James, and Hess, Matthias. 2014. “Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling”. Frontiers in Microbiology 5 (307): 307.
Piao, H., Lachman, M., Malfatti, S., Sczyrba, A., Knierim, B., Auer, M., Tringe, S. G., Mackie, R. I., Yeoman, C. J., and Hess, M. (2014). Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology 5, 307.
Piao, H., et al., 2014. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology, 5(307), p 307.
H. Piao, et al., “Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling”, Frontiers in Microbiology, vol. 5, 2014, pp. 307.
Piao, H., Lachman, M., Malfatti, S., Sczyrba, A., Knierim, B., Auer, M., Tringe, S.G., Mackie, R.I., Yeoman, C.J., Hess, M.: Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology. 5, 307 (2014).
Piao, Hailan, Lachman, Medora, Malfatti, Stephanie, Sczyrba, Alexander, Knierim, Bernhard, Auer, Manfred, Tringe, Susannah Green, Mackie, Roderick Ian, Yeoman, Carl James, and Hess, Matthias. “Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling”. Frontiers in Microbiology 5.307 (2014): 307.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

CowPI: A Rumen Microbiome Focussed Version of the PICRUSt Functional Inference Software.
Wilkinson TJ, Huws SA, Edwards JE, Kingston-Smith AH, Siu-Ting K, Hughes M, Rubino F, Friedersdorff M, Creevey CJ., Front Microbiol 9(), 2018
PMID: 29887853
Using 'Omic Approaches to Compare Temporal Bacterial Colonization of Lolium perenne, Lotus corniculatus, and Trifolium pratense in the Rumen.
Elliott CL, Edwards JE, Wilkinson TJ, Allison GG, McCaffrey K, Scott MB, Rees-Stevens P, Kingston-Smith AH, Huws SA., Front Microbiol 9(), 2018
PMID: 30283417
Plant Litter Type Dictates Microbial Communities Responsible for Greenhouse Gas Production in Amended Lake Sediments.
Yakimovich KM, Emilson EJS, Carson MA, Tanentzap AJ, Basiliko N, Mykytczuk NCS., Front Microbiol 9(), 2018
PMID: 30459741
Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling.
Petri RM, Pourazad P, Khiaosa-Ard R, Klevenhusen F, Metzler-Zebeli BU, Zebeli Q., PLoS One 12(8), 2017
PMID: 28763489
Progressive Colonization of Bacteria and Degradation of Rice Straw in the Rumen by Illumina Sequencing.
Cheng Y, Wang Y, Li Y, Zhang Y, Liu T, Wang Y, Sharpton TJ, Zhu W., Front Microbiol 8(), 2017
PMID: 29163444
Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.
Huws SA, Edwards JE, Creevey CJ, Rees Stevens P, Lin W, Girdwood SE, Pachebat JA, Kingston-Smith AH., FEMS Microbiol Ecol 92(1), 2016
PMID: 26542074
Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi.
Chaucheyras-Durand F, Ameilbonne A, Bichat A, Mosoni P, Ossa F, Forano E., J Appl Microbiol 120(3), 2016
PMID: 26600313
Temporal Metagenomic and Metabolomic Characterization of Fresh Perennial Ryegrass Degradation by Rumen Bacteria.
Mayorga OL, Kingston-Smith AH, Kim EJ, Allison GG, Wilkinson TJ, Hegarty MJ, Theodorou MK, Newbold CJ, Huws SA., Front Microbiol 7(), 2016
PMID: 27917166
Exploring the sheep rumen microbiome for carbohydrate-active enzymes.
Lopes LD, de Souza Lima AO, Taketani RG, Darias P, da Silva LR, Romagnoli EM, Louvandini H, Abdalla AL, Mendes R., Antonie Van Leeuwenhoek 108(1), 2015
PMID: 25900454
Insights into the bacterial community and its temporal succession during the fermentation of wine grapes.
Piao H, Hawley E, Kopf S, DeScenzo R, Sealock S, Henick-Kling T, Hess M., Front Microbiol 6(), 2015
PMID: 26347718
Intra- and inter-species interactions in microbial communities.
Comolli LR., Front Microbiol 5(), 2014
PMID: 25505455

31 References

Daten bereitgestellt von Europe PubMed Central.

QIIME allows analysis of high-throughput community sequencing data.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R., Nat. Methods 7(5), 2010
PMID: 20383131
A method for detecting methylotrophic bacteria on solid-surfaces
Corpe W.., 1985
Search and clustering orders of magnitude faster than BLAST.
Edgar RC., Bioinformatics 26(19), 2010
PMID: 20709691
Characterization of the dynamics of initial bacterial colonization of nonconserved forage in the bovine rumen.
Edwards JE, Huws SA, Kim EJ, Kingston-Smith AH., FEMS Microbiol. Ecol. 62(3), 2007
PMID: 17941835
Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.
Edwards JE, Kingston-Smith AH, Jimenez HR, Huws SA, Skot KP, Griffith GW, McEwan NR, Theodorou MK., FEMS Microbiol. Ecol. 66(3), 2008
PMID: 18673390
Experimental factors affecting PCR-based estimates of microbial species richness and evenness.
Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P., ISME J 4(5), 2010
PMID: 20090784

Goering H., Van P.., 1970
Methylobacterium
Green P.., 2006
Composition of plant cell walls.
Heredia A, Jimenez A, Guillen R., Z Lebensm Unters Forsch 200(1), 1995
PMID: 7732730
Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.
Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM., Science 331(6016), 2011
PMID: 21273488
Formate as an intermediate in the bovine rumen fermentation.
Hungate RE, Smith W, Bauchop T, Yu I, Rabinowitz JC., J. Bacteriol. 102(2), 1970
PMID: 5419259
Successional colonization of perennial ryegrass by rumen bacteria.
Huws SA, Mayorga OL, Theodorou MK, Onime LA, Kim EJ, Cookson AH, Newbold CJ, Kingston-Smith AH., Lett. Appl. Microbiol. 56(3), 2013
PMID: 23206248
Simulating the contribution of coaggregation to interspecies hydrogen fluxes in syntrophic methanogenic consortia.
Ishii S, Kosaka T, Hotta Y, Watanabe K., Appl. Environ. Microbiol. 72(7), 2006
PMID: 16820513
Structure of the archaeal community of the rumen.
Janssen PH, Kirs M., Appl. Environ. Microbiol. 74(12), 2008
PMID: 18424540
Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens
Joblin K., Campbell G., Richardson A., Stewart C.., 1989
Cellulose: fascinating biopolymer and sustainable raw material.
Klemm D, Heublein B, Fink HP, Bohn A., Angew. Chem. Int. Ed. Engl. 44(22), 2005
PMID: 15861454
The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.
Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT., PLoS ONE 5(1), 2010
PMID: 20126622
An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P., ISME J 6(3), 2011
PMID: 22134646
ACETATE METABOLISM IN THE RUMINANT.
SABINE JR, JOHNSON BC., J. Biol. Chem. 239(), 1964
PMID: 14114878
Metabolic interactions between anaerobic bacteria in methanogenic environments.
Stams AJ., Antonie Van Leeuwenhoek 66(1-3), 1994
PMID: 7747937
Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation.
Theodorou MK, Mennim G, Davies DR, Zhu WY, Trinci AP, Brookman JL., Proc Nutr Soc 55(3), 1996
PMID: 9004333
Why don't ruminal bacteria digest cellulose faster?
Weimer PJ., J. Dairy Sci. 79(8), 1996
PMID: 8880475
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25101058
PubMed | Europe PMC

Suchen in

Google Scholar