Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background

Torres Tejerizo G, Pistorio M, Althabegoiti MJ, Cervantes L, Wibberg D, Schlüter A, Pühler A, Lagares A, Romero D, Brom S (2014)
FEMS Microbiology Ecology 88(3): 565-578.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Torres Tejerizo, Gonzalo; Pistorio, Mariano; Althabegoiti, Maria J.; Cervantes, Laura; Wibberg, DanielUniBi; Schlüter, AndreasUniBi ; Pühler, AlfredUniBi ; Lagares, Antonio; Romero, David; Brom, Susana
Abstract / Bemerkung
Plasmids have played a major role in bacterial evolution, mainly by their capacity to perform horizontal gene transfer (HGT). Their conjugative transfer (CT) properties are usually described in terms of the plasmid itself. In this work, we analyzed structural and functional aspects of the CT of pLPU83a, an accessory replicon from Rhizobium sp. LPU83, able to transfer from its parental strain, from Ensifer meliloti, or from Rhizobium etli. pLPU83a contains a complete set of transfer genes, featuring a particular organization, shared with only two other rhizobial plasmids. These plasmids contain a TraR quorum-sensing (QS) transcriptional regulator, but lack an acyl-homoserine lactone (AHL) synthase gene. We also determined that the ability of pLPU83a to transfer from R.etli CFN42 genomic background was mainly achieved through mobilization, employing the machinery of the endogenous plasmid pRetCFN42a, falling under control of the QS regulators from pRetCFN42a. In contrast, from its native or from the E.meliloti background, pLPU83a utilized its own machinery for conjugation, requiring the plasmid-encoded traR. Activation of TraR seemed to be AHL independent. The results obtained indicate that the CT phenotype of a plasmid is dictated not only by the genes it carries, but by their interaction with its genomic context.
Stichworte
luxR regulators; conjugative transfer regulation; rhizobia; plasmid
Erscheinungsjahr
2014
Zeitschriftentitel
FEMS Microbiology Ecology
Band
88
Ausgabe
3
Seite(n)
565-578
ISSN
0168-6496
Page URI
https://pub.uni-bielefeld.de/record/2685861

Zitieren

Torres Tejerizo G, Pistorio M, Althabegoiti MJ, et al. Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiology Ecology. 2014;88(3):565-578.
Torres Tejerizo, G., Pistorio, M., Althabegoiti, M. J., Cervantes, L., Wibberg, D., Schlüter, A., Pühler, A., et al. (2014). Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiology Ecology, 88(3), 565-578. doi:10.1111/1574-6941.12325
Torres Tejerizo, Gonzalo, Pistorio, Mariano, Althabegoiti, Maria J., Cervantes, Laura, Wibberg, Daniel, Schlüter, Andreas, Pühler, Alfred, Lagares, Antonio, Romero, David, and Brom, Susana. 2014. “Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background”. FEMS Microbiology Ecology 88 (3): 565-578.
Torres Tejerizo, G., Pistorio, M., Althabegoiti, M. J., Cervantes, L., Wibberg, D., Schlüter, A., Pühler, A., Lagares, A., Romero, D., and Brom, S. (2014). Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiology Ecology 88, 565-578.
Torres Tejerizo, G., et al., 2014. Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiology Ecology, 88(3), p 565-578.
G. Torres Tejerizo, et al., “Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background”, FEMS Microbiology Ecology, vol. 88, 2014, pp. 565-578.
Torres Tejerizo, G., Pistorio, M., Althabegoiti, M.J., Cervantes, L., Wibberg, D., Schlüter, A., Pühler, A., Lagares, A., Romero, D., Brom, S.: Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiology Ecology. 88, 565-578 (2014).
Torres Tejerizo, Gonzalo, Pistorio, Mariano, Althabegoiti, Maria J., Cervantes, Laura, Wibberg, Daniel, Schlüter, Andreas, Pühler, Alfred, Lagares, Antonio, Romero, David, and Brom, Susana. “Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background”. FEMS Microbiology Ecology 88.3 (2014): 565-578.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative genomic analysis of Acinetobacter spp. plasmids originating from clinical settings and environmental habitats.
Salto IP, Torres Tejerizo G, Wibberg D, Pühler A, Schlüter A, Pistorio M., Sci Rep 8(1), 2018
PMID: 29773850
Control of the pollution of antibiotic resistance genes in soils by quorum sensing inhibition.
Lai BM, Zhang K, Shen DS, Wang MZ, Shentu JL, Li N., Environ Sci Pollut Res Int 24(6), 2017
PMID: 28004368
Regulation of conjugative transfer of plasmids and integrative conjugative elements.
Bañuelos-Vazquez LA, Torres Tejerizo G, Brom S., Plasmid 91(), 2017
PMID: 28438469
Origin and Evolution of Rickettsial Plasmids.
El Karkouri K, Pontarotti P, Raoult D, Fournier PE., PLoS One 11(2), 2016
PMID: 26866478
Development of molecular tools to monitor conjugative transfer in rhizobia.
Tejerizo GT, Bañuelos LA, Cervantes L, Gaytán P, Pistorio M, Romero D, Brom S., J Microbiol Methods 117(), 2015
PMID: 26272377

75 References

Daten bereitgestellt von Europe PubMed Central.

ProtTest: selection of best-fit models of protein evolution.
Abascal F, Zardoya R, Posada D., Bioinformatics 21(9), 2005
PMID: 15647292
pSymA-dependent mobilization of the Sinorhizobium meliloti pSymB megaplasmid.
Blanca-Ordonez H, Oliva-Garcia JJ, Perez-Mendoza D, Soto MJ, Olivares J, Sanjuan J, Nogales J., J. Bacteriol. 192(23), 2010
PMID: 20889746
Pyrones as bacterial signaling molecules.
Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y, Manske C, Schubert K, Bode HB, Heermann R., Nat. Chem. Biol. 9(9), 2013
PMID: 23851573
Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum
Brewin, J Gen Microbiol 120(), 1980
Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance.
Brom S, Garcia de los Santos A, Stepkowsky T, Flores M, Davila G, Romero D, Palacios R., J. Bacteriol. 174(16), 1992
PMID: 1644746
In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons.
Brom S, Garcia-de los Santos A, Cervantes L, Palacios R, Romero D., Plasmid 44(1), 2000
PMID: 10873525
Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination.
Brom S, Girard L, Tun-Garrido C, Garcia-de los Santos A, Bustos P, Gonzalez V, Romero D., J. Bacteriol. 186(22), 2004
PMID: 15516565
Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis
Casse, J Gen Microbiol 113(), 1979
The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain.
Cervantes L, Bustos P, Girard L, Santamaria RI, Davila G, Vinuesa P, Romero D, Brom S., BMC Microbiol. 11(), 2011
PMID: 21702991
Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria.
Cha C, Gao P, Chen YC, Shaw PD, Farrand SK., Mol. Plant Microbe Interact. 11(11), 1998
PMID: 9805399
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti.
Charoenpanich P, Meyer S, Becker A, McIntosh M., J. Bacteriol. 195(14), 2013
PMID: 23687265
Genetic exchange between bacteria in the environment.
Davison J., Plasmid 42(2), 1999
PMID: 10489325
Conjugative DNA metabolism in Gram-negative bacteria.
de la Cruz F, Frost LS, Meyer RJ, Zechner EL., FEMS Microbiol. Rev. 34(1), 2010
PMID: 19919603
Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central argentina and uruguay
del Papa MF , Balague LJ, Sowinski SC, Wegener C, Segundo E, Abarca FM, Toro N, Niehaus K, P hler A , Aguilar OM, Martinez-Drets G, Lagares A., Appl. Environ. Microbiol. 65(4), 1999
PMID: 10103231
Identification and characterization of a nodH ortholog from the alfalfa-nodulating Or191-like rhizobia.
Del Papa MF, Pistorio M, Draghi WO, Lozano MJ, Giusti MA, Medina C, van Dillewijn P, Martinez-Abarca F, Moron Flores B, Ruiz-Sainz JE, Megias M, Puhler A, Niehaus K, Toro N, Lagares A., Mol. Plant Microbe Interact. 20(2), 2007
PMID: 17313165
Plasmid transfer systems in the rhizobia.
Ding H, Hynes MF., Can. J. Microbiol. 55(8), 2009
PMID: 19898531
Conjugal transfer of nopaline and agropine Ti-plasmids -The role of agrocinopines
Ellis, Mol Gen Genet 186(), 1982
Construction of an Agrobacterium tumefaciens C58 recA mutant.
Farrand SK, O'Morchoe SP, McCutchan J., J. Bacteriol. 171(10), 1989
PMID: 2676971
PpoR, an orphan LuxR-family protein of Pseudomonas putida KT2440, modulates competitive fitness and surface motility independently of N-acylhomoserine lactones.
Fernandez-Pinar R, Camara M, Soriano MI, Dubern JF, Heeb S, Ramos JL, Espinosa-Urgel M., Environ Microbiol Rep 3(1), 2011
PMID: 23761234
sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD., J. Bacteriol. 187(23), 2005
PMID: 16291666

Hall, 1984
Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate.
He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C., J. Bacteriol. 185(3), 2003
PMID: 12533456
Plasmids foster diversification and adaptation of bacterial populations in soil.
Heuer H, Smalla K., FEMS Microbiol. Rev. 36(6), 2012
PMID: 22393901
Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens
Hooykaas, Nature 291(), 1981
High frequency transfer of nodulating ability between strains and species of Rhizobium
Johnston, Nature 276(), 1978
Two transmissible plasmids in Rhizobium leguminosarum strain 300
Johnston, J Gen Microbiol 128(), 1982
Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes.
Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM., Gene 166(1), 1995
PMID: 8529885
Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts.
Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N., Microbiology (Reading, Engl.) 147(Pt 4), 2001
PMID: 11283294

Leemans, 1983
Identification of two quorum-sensing systems in Sinorhizobium meliloti.
Marketon MM, Gonzalez JE., J. Bacteriol. 184(13), 2002
PMID: 12057940
Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones.
Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE., J. Bacteriol. 184(20), 2002
PMID: 12270827
Molecular cloning and characterization of the recA gene of Rhizobium phaseoli and construction of recA mutants.
Martinez-Salazar JM, Romero D, Girard ML, Davila G., J. Bacteriol. 173(10), 1991
PMID: 2022610
Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae.
McAnulla C, Edwards A, Sanchez-Contreras M, Sawers RG, Downie JA., Microbiology (Reading, Engl.) 153(Pt 7), 2007
PMID: 17600052
Stability and transmissibility of the cryptic plasmids of Rhizobium meliloti GR4. Their possible use in the construction of cloning vectors of rhizobia
Mercado-Blanco, Arch Microbiol 160(), 1993
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369

Miller, 1972
Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions.
Noel KD, Sanchez A, Fernandez L, Leemans J, Cevallos MA., J. Bacteriol. 158(1), 1984
PMID: 6325385
Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability.
Oresnik IJ, Liu SL, Yost CK, Hynes MF., J. Bacteriol. 182(12), 2000
PMID: 10852892
Orphan LuxR regulators of quorum sensing.
Patankar AV, Gonzalez JE., FEMS Microbiol. Rev. 33(4), 2009
PMID: 19222586
Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids.
Perez-Mendoza D, Sepulveda E, Pando V, Munoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuan J., J. Bacteriol. 187(21), 2005
PMID: 16237017
Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction.
Piper KR, Beck von Bodman S, Farrand SK., Nature 362(6419), 1993
PMID: 8464476
Construction of a Sinorhizobium meliloti strain carrying a stable and non-transmissible chromosomal single copy of the green fluorescent protein GFP-P64L/S65T.
Pistorio M, Balague LJ, Del Papa MF, Pich-Otero A, Lodeiro A, Hozbor DF, Lagares A., FEMS Microbiol. Lett. 214(2), 2002
PMID: 12351225
rptA, a novel gene from Ensifer (Sinorhizobium) meliloti involved in conjugal transfer.
Pistorio M, Torres Tejerizo GA, Del Papa MF, Giusti Mde L, Lozano M, Lagares A., FEMS Microbiol. Lett. 345(1), 2013
PMID: 23672494
The pAtC58 plasmid of Agrobacterium tumefaciens is not essential for tumour induction
Rosenberg, Mol Gen Genet 196(), 1984

Sambrook, 1989
Transcriptional interference and repression modulate the conjugative ability of the symbiotic plasmid of Rhizobium etli.
Sepulveda E, Perez-Mendoza D, Ramirez-Romero MA, Soto MJ, Lopez-Lara IM, Geiger O, Sanjuan J, Brom S, Romero D., J. Bacteriol. 190(12), 2008
PMID: 18424522
Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography.
Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK., Proc. Natl. Acad. Sci. U.S.A. 94(12), 1997
PMID: 9177164
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria
Simon, Bio/Technology 1(), 1983

Slater, 1984
Studying plasmid horizontal transfer in situ: a critical review.
Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S., Nat. Rev. Microbiol. 3(9), 2005
PMID: 16138098
LuxR-family 'solos': bachelor sensors/regulators of signalling molecules.
Subramoni S, Venturi V., Microbiology (Reading, Engl.) 155(Pt 5), 2009
PMID: 19383698
Bacterial subfamily of LuxR regulators that respond to plant compounds.
Subramoni S, Gonzalez JF, Johnson A, Pechy-Tarr M, Rochat L, Paulsen I, Loper JE, Keel C, Venturi V., Appl. Environ. Microbiol. 77(13), 2011
PMID: 21531826
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83.
Torres Tejerizo G, Del Papa MF, de los Angeles Giusti M, Draghi W, Lozano M, Lagares A, Pistorio M., Plasmid 64(3), 2010
PMID: 20621118
The nodulation of alfalfa by the acid-tolerant Rhizobium sp. strain LPU83 does not require sulfated forms of lipochitooligosaccharide nodulation signals.
Torres Tejerizo G, Del Papa MF, Soria-Diaz ME, Draghi W, Lozano M, Giusti Mde L, Manyani H, Megias M, Gil Serrano A, Puhler A, Niehaus K, Lagares A, Pistorio M., J. Bacteriol. 193(1), 2010
PMID: 20971905
First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group.
Tejerizo GT, Del Papa MF, Draghi W, Lozano M, Giusti Mde L, Martini C, Salas ME, Salto I, Wibberg D, Szczepanowski R, Weidner S, Schluter A, Lagares A, Pistorio M., J. Biotechnol. 155(1), 2011
PMID: 21329739
N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer.
Wilkinson A, Danino V, Wisniewski-Dye F, Lithgow JK, Downie JA., J. Bacteriol. 184(16), 2002
PMID: 12142421
The genome of Rhizobium leguminosarum has recognizable core and accessory components.
Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J., Genome Biol. 7(4), 2006
PMID: 16640791
Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones.
Zhang L, Murphy PJ, Kerr A, Tate ME., Nature 362(6419), 1993
PMID: 8464475
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24646299
PubMed | Europe PMC

Suchen in

Google Scholar