Insects use two distinct classes of steps during unrestrained locomotion
Theunissen L, Dürr V (2013)
PLOS ONE 8(12): e85321.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Background:Adaptive, context-dependent control of locomotion requires modulation of centrally generated rhythmic motor patterns through peripheral control loops and postural reflexes. Thus assuming that the modulation of rhythmic motor patterns accounts for much of the behavioural variability observed in legged locomotion, investigating behavioural variability is a key to the understanding of context-dependent control mechanisms in locomotion. To date, the variability of unrestrained locomotion is poorly understood, and virtually nothing is known about the features that characterise the natural statistics of legged locomotion. In this study, we quantify the natural variability of hexapedal walking and climbing in insects, drawing from a database of several thousand steps recorded over two hours of walking time.
Results: We show that the range of step length used by unrestrained climbing stick insects is large, showing that step length can be changed substantially for adaptive locomotion. Step length distributions were always bimodal, irrespective of leg type and walking condition, suggesting the presence of two distinct classes of steps: short and long steps. Probability density of step length was well-described by a gamma distribution for short steps, and a logistic distribution for long steps. Major coefficients of these distributions remained largely unaffected by walking conditions. Short and long steps differed concerning their spatial occurrence on the walking substrate, their timing within the step sequence, and their prevalent swing direction. Finally, ablation of structures that serve to improve foothold increased the ratio of short to long steps, indicating a corrective function of short steps.
Conclusions: Statistical and functional differences suggest that short and long steps are physiologically distinct classes of leg movements that likely reflect distinct control mechanisms at work.
Erscheinungsjahr
2013
Zeitschriftentitel
PLOS ONE
Band
8
Ausgabe
12
Art.-Nr.
e85321
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2648328
Zitieren
Theunissen L, Dürr V. Insects use two distinct classes of steps during unrestrained locomotion. PLOS ONE. 2013;8(12): e85321.
Theunissen, L., & Dürr, V. (2013). Insects use two distinct classes of steps during unrestrained locomotion. PLOS ONE, 8(12), e85321. https://doi.org/10.1371/journal.pone.0085321
Theunissen, Leslie, and Dürr, Volker. 2013. “Insects use two distinct classes of steps during unrestrained locomotion”. PLOS ONE 8 (12): e85321.
Theunissen, L., and Dürr, V. (2013). Insects use two distinct classes of steps during unrestrained locomotion. PLOS ONE 8:e85321.
Theunissen, L., & Dürr, V., 2013. Insects use two distinct classes of steps during unrestrained locomotion. PLOS ONE, 8(12): e85321.
L. Theunissen and V. Dürr, “Insects use two distinct classes of steps during unrestrained locomotion”, PLOS ONE, vol. 8, 2013, : e85321.
Theunissen, L., Dürr, V.: Insects use two distinct classes of steps during unrestrained locomotion. PLOS ONE. 8, : e85321 (2013).
Theunissen, Leslie, and Dürr, Volker. “Insects use two distinct classes of steps during unrestrained locomotion”. PLOS ONE 8.12 (2013): e85321.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
7 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Body-terrain interaction affects large bump traversal of insects and legged robots.
Gart SW, Li C., Bioinspir Biomim 13(2), 2018
PMID: 29394159
Gart SW, Li C., Bioinspir Biomim 13(2), 2018
PMID: 29394159
Dynamic traversal of large gaps by insects and legged robots reveals a template.
Gart SW, Yan C, Othayoth R, Ren Z, Li C., Bioinspir Biomim 13(2), 2018
PMID: 29394160
Gart SW, Yan C, Othayoth R, Ren Z, Li C., Bioinspir Biomim 13(2), 2018
PMID: 29394160
Transfer of Spatial Contact Information Among Limbs and the Notion of Peripersonal Space in Insects.
Dürr V, Schilling M., Front Comput Neurosci 12(), 2018
PMID: 30618693
Dürr V, Schilling M., Front Comput Neurosci 12(), 2018
PMID: 30618693
Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
Dallmann CJ, Dürr V, Schmitz J., Proc Biol Sci 283(1823), 2016
PMID: 26791608
Dallmann CJ, Dürr V, Schmitz J., Proc Biol Sci 283(1823), 2016
PMID: 26791608
Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
Li C, Pullin AO, Haldane DW, Lam HK, Fearing RS, Full RJ., Bioinspir Biomim 10(4), 2015
PMID: 26098002
Li C, Pullin AO, Haldane DW, Lam HK, Fearing RS, Full RJ., Bioinspir Biomim 10(4), 2015
PMID: 26098002
WITHDRAWN: Positive force feedback in development of substrate grip in the stick insect tarsus.
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev (), 2014
PMID: 24904979
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev (), 2014
PMID: 24904979
Positive force feedback in development of substrate grip in the stick insect tarsus.
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev 43(5), 2014
PMID: 24951882
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J., Arthropod Struct Dev 43(5), 2014
PMID: 24951882
52 References
Daten bereitgestellt von Europe PubMed Central.
Adaptive motor behavior in insects.
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559
How animals move: an integrative view.
Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S., Science 288(5463), 2000
PMID: 10753108
Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S., Science 288(5463), 2000
PMID: 10753108
Organizing network action for locomotion: insights from studying insect walking.
Buschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2007
PMID: 17888515
Buschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2007
PMID: 17888515
Dynamic sensorimotor interactions in locomotion.
Rossignol S, Dubuc R, Gossard JP., Physiol. Rev. 86(1), 2006
PMID: 16371596
Rossignol S, Dubuc R, Gossard JP., Physiol. Rev. 86(1), 2006
PMID: 16371596
Context-dependent reflex control: some insights into the role of balance.
Rietdyk S, Patla AE., Exp Brain Res 119(2), 1998
PMID: 9535575
Rietdyk S, Patla AE., Exp Brain Res 119(2), 1998
PMID: 9535575
The rough-terrain problem: accurate foot targeting as a function of visual information regarding target location.
Rietdyk S, Drifmeyer JE., J Mot Behav 42(1), 2010
PMID: 20018585
Rietdyk S, Drifmeyer JE., J Mot Behav 42(1), 2010
PMID: 20018585
Understanding the roles of vision in the control of human locomotion
AUTHOR UNKNOWN, 1997
AUTHOR UNKNOWN, 1997
What functions do reflexes serve during human locomotion?
Zehr EP, Stein RB., Prog. Neurobiol. 58(2), 1999
PMID: 10338359
Zehr EP, Stein RB., Prog. Neurobiol. 58(2), 1999
PMID: 10338359
Corrective responses to loss of ground support during walking. I. Intact cats.
Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ., J. Neurophysiol. 71(2), 1994
PMID: 8176429
Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ., J. Neurophysiol. 71(2), 1994
PMID: 8176429
Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats.
Hiebert GW, Gorassini MA, Jiang W, Prochazka A, Pearson KG., J. Neurophysiol. 71(2), 1994
PMID: 8176430
Hiebert GW, Gorassini MA, Jiang W, Prochazka A, Pearson KG., J. Neurophysiol. 71(2), 1994
PMID: 8176430
Goal-driven behavioral adaptations in gap-climbing Drosophila.
Pick S, Strauss R., Curr. Biol. 15(16), 2005
PMID: 16111941
Pick S, Strauss R., Curr. Biol. 15(16), 2005
PMID: 16111941
Visual targeting of forelimbs in ladder-walking locusts.
Niven JE, Buckingham CJ, Lumley S, Cuttle MF, Laughlin SB., Curr. Biol. 20(1), 2009
PMID: 20036539
Niven JE, Buckingham CJ, Lumley S, Cuttle MF, Laughlin SB., Curr. Biol. 20(1), 2009
PMID: 20036539
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
Lessons for circuit function from large insects: towards understanding the neural basis of motor flexibility.
Buschges A., Curr. Opin. Neurobiol. 22(4), 2012
PMID: 22386530
Buschges A., Curr. Opin. Neurobiol. 22(4), 2012
PMID: 22386530
Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
Buschges A., J. Neurophysiol. 93(3), 2005
PMID: 15738270
Buschges A., J. Neurophysiol. 93(3), 2005
PMID: 15738270
The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus.
Cruse H., Physiol. Entomol. 4(2), 1979
PMID: IND79073327
Cruse H., Physiol. Entomol. 4(2), 1979
PMID: IND79073327
Stick insect locomotion on a walking wheel: interleg coordination of leg position
AUTHOR UNKNOWN, 1983
AUTHOR UNKNOWN, 1983
The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning.
Durr V, Ebeling W., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939767
Durr V, Ebeling W., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939767
Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis.
Mu L, Ritzmann RE., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(11), 2005
PMID: 16258746
Mu L, Ritzmann RE., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(11), 2005
PMID: 16258746
Stick insect locomotion in a complex environment: climbing over large gaps.
Blaesing B, Cruse H., J. Exp. Biol. 207(Pt 8), 2004
PMID: 15010478
Blaesing B, Cruse H., J. Exp. Biol. 207(Pt 8), 2004
PMID: 15010478
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain
AUTHOR UNKNOWN, 1984
AUTHOR UNKNOWN, 1984
A dynamic model of thoracic differentiation for the control of turning in the stick insect.
Rosano H, Webb B., Biol Cybern 97(3), 2007
PMID: 17647010
Rosano H, Webb B., Biol Cybern 97(3), 2007
PMID: 17647010
Context-dependent changes in strength and efficacy of leg coordination mechanisms.
Durr V., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939768
Durr V., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939768
Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S., J. Exp. Biol. 215(Pt 24), 2012
PMID: 22972892
Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S., J. Exp. Biol. 215(Pt 24), 2012
PMID: 22972892
The function of the legs in the free walking stick insect Carausiusmorosus
AUTHOR UNKNOWN, 1976
AUTHOR UNKNOWN, 1976
Peripheral influences on the movement of the legs in a walking insect Carausiusmorosus
AUTHOR UNKNOWN, 1982
AUTHOR UNKNOWN, 1982
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Recherches sur la biologie et l'anatomie des Phasmes
AUTHOR UNKNOWN, 1901
AUTHOR UNKNOWN, 1901
CircStat: A MATLAB Toolbox for Circular Statistics
AUTHOR UNKNOWN, 2009
AUTHOR UNKNOWN, 2009
Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen
AUTHOR UNKNOWN, 1964
AUTHOR UNKNOWN, 1964
Detecting substrate engagement: responses of tarsal campaniform sensilla in cockroaches.
Zill SN, Keller BR, Chaudhry S, Duke ER, Neff D, Quinn R, Flannigan C., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 196(6), 2010
PMID: 20396892
Zill SN, Keller BR, Chaudhry S, Duke ER, Neff D, Quinn R, Flannigan C., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 196(6), 2010
PMID: 20396892
Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes.
Ebeling W, Durr V., J. Exp. Biol. 209(Pt 11), 2006
PMID: 16709921
Ebeling W, Durr V., J. Exp. Biol. 209(Pt 11), 2006
PMID: 16709921
Mechanisms of stick insect locomotion in a gap-crossing paradigm.
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308
The two groups of sensilla in the ventral coxal hairplate of Carausius morosus have different roles during walking.
Dean J, Schmitz J., Physiol. Entomol. 17(4), 1992
PMID: IND93022391
Dean J, Schmitz J., Physiol. Entomol. 17(4), 1992
PMID: IND93022391
The contributions of diverse sense organs in the control of leg movement by a walking insect
AUTHOR UNKNOWN, 1984
AUTHOR UNKNOWN, 1984
The treading-on-tarsus reflex in stick insects: phase-dependence and modifications of the motor output during walking
AUTHOR UNKNOWN, 1989
AUTHOR UNKNOWN, 1989
Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence.
Bullock JM, Drechsler P, Federle W., J. Exp. Biol. 211(Pt 20), 2008
PMID: 18840668
Bullock JM, Drechsler P, Federle W., J. Exp. Biol. 211(Pt 20), 2008
PMID: 18840668
The tarso-pretarsal chordotonal organ as an element in cockroach walking
AUTHOR UNKNOWN, 1997
AUTHOR UNKNOWN, 1997
Tarsal structure and climbing ability of cockroaches
AUTHOR UNKNOWN, 1952
AUTHOR UNKNOWN, 1952
Innervation pattern and sensory supply of the midleg of Schistocercagregaria (Insecta, Orthopteroidea)
AUTHOR UNKNOWN, 1991
AUTHOR UNKNOWN, 1991
Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects.
Holtje M, Hustert R., J. Exp. Biol. 206(Pt 16), 2003
PMID: 12847116
Holtje M, Hustert R., J. Exp. Biol. 206(Pt 16), 2003
PMID: 12847116
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
Zill SN, Buschges A, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197(8), 2011
PMID: 21544617
Zill SN, Buschges A, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197(8), 2011
PMID: 21544617
Activity of the claw retractor muscle in stick insects in wall and ceiling situations.
Busshardt P, Gorb SN, Wolf H., J. Exp. Biol. 214(Pt 10), 2011
PMID: 21525313
Busshardt P, Gorb SN, Wolf H., J. Exp. Biol. 214(Pt 10), 2011
PMID: 21525313
Elasticity and movements of the cockroach tarsus in walking
AUTHOR UNKNOWN, 1999
AUTHOR UNKNOWN, 1999
Mechanisms of coupling between the ipsilateral legs of a walking insect (Carausiusmorosus)
AUTHOR UNKNOWN, 1988
AUTHOR UNKNOWN, 1988
Proprioceptive feedback reinforces centrally generated stepping patterns in the cockroach.
Fuchs E, Holmes P, David I, Ayali A., J. Exp. Biol. 215(Pt 11), 2012
PMID: 22573767
Fuchs E, Holmes P, David I, Ayali A., J. Exp. Biol. 215(Pt 11), 2012
PMID: 22573767
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
Material in PUB:
Zitiert
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 24376877
PubMed | Europe PMC
Suchen in