Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade

Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, Woyke T, McMahon K, Bertilsson S, Stepanauskas R, Andersson SG (2013)
Genome biology 14(11): R130.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Zaremba-Niedzwiedzka, Katarzyna; Viklund, Johan; Zhao, Weizhou; Ast, Jennifer; Sczyrba, AlexanderUniBi ; Woyke, Tanja; McMahon, Katherina; Bertilsson, Stefan; Stepanauskas, Ramunas; Andersson, Siv Ge
Abstract / Bemerkung
BACKGROUND: The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. RESULTS: We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. CONCLUSIONS: We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host.
Genome biology
Page URI


Zaremba-Niedzwiedzka K, Viklund J, Zhao W, et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome biology. 2013;14(11): R130.
Zaremba-Niedzwiedzka, K., Viklund, J., Zhao, W., Ast, J., Sczyrba, A., Woyke, T., McMahon, K., et al. (2013). Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome biology, 14(11), R130. doi:10.1186/gb-2013-14-11-r130
Zaremba-Niedzwiedzka, K., Viklund, J., Zhao, W., Ast, J., Sczyrba, A., Woyke, T., McMahon, K., Bertilsson, S., Stepanauskas, R., and Andersson, S. G. (2013). Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome biology 14:R130.
Zaremba-Niedzwiedzka, K., et al., 2013. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome biology, 14(11): R130.
K. Zaremba-Niedzwiedzka, et al., “Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade”, Genome biology, vol. 14, 2013, : R130.
Zaremba-Niedzwiedzka, K., Viklund, J., Zhao, W., Ast, J., Sczyrba, A., Woyke, T., McMahon, K., Bertilsson, S., Stepanauskas, R., Andersson, S.G.: Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome biology. 14, : R130 (2013).
Zaremba-Niedzwiedzka, Katarzyna, Viklund, Johan, Zhao, Weizhou, Ast, Jennifer, Sczyrba, Alexander, Woyke, Tanja, McMahon, Katherina, Bertilsson, Stefan, Stepanauskas, Ramunas, and Andersson, Siv Ge. “Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade”. Genome biology 14.11 (2013): R130.

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations.
Garcia SL, Stevens SLR, Crary B, Martinez-Garcia M, Stepanauskas R, Woyke T, Tringe SG, Andersson SGE, Bertilsson S, Malmstrom RR, McMahon KD., ISME J 12(3), 2018
PMID: 29222442
Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal.
Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F., Appl Environ Microbiol 84(1), 2018
PMID: 29079621
Cultivation and genomics of the first freshwater SAR11 (LD12) isolate.
Henson MW, Lanclos VC, Faircloth BC, Thrash JC., ISME J 12(7), 2018
PMID: 29599519
Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater lake (Grand Lake, OK, USA).
Morrison JM, Baker KD, Zamor RM, Nikolai S, Elshahed MS, Youssef NH., PLoS One 12(5), 2017
PMID: 28493994
Excess of non-conservative amino acid changes in marine bacterioplankton lineages with reduced genomes.
Luo H, Huang Y, Stepanauskas R, Tang J., Nat Microbiol 2(), 2017
PMID: 28604700
Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade.
Jimenez-Infante F, Ngugi DK, Vinu M, Blom J, Alam I, Bajic VB, Stingl U., FEMS Microbiol Ecol 93(7), 2017
PMID: 28645159
Genomic divergence and cohesion in a species of pelagic freshwater bacteria.
Hoetzinger M, Hahn MW., BMC Genomics 18(1), 2017
PMID: 29037158
Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents.
Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, Seewald JS, Huber JA., Nat Commun 8(1), 2017
PMID: 29066755
Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs.
Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-Valera F., Front Microbiol 8(), 2017
PMID: 29163419
Genome Reconstruction from Metagenomic Data Sets Reveals Novel Microbes in the Brackish Waters of the Caspian Sea.
Mehrshad M, Amoozegar MA, Ghai R, Shahzadeh Fazeli SA, Rodriguez-Valera F., Appl Environ Microbiol 82(5), 2016
PMID: 26729711
Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria.
Eiler A, Mondav R, Sinclair L, Fernandez-Vidal L, Scofield DG, Schwientek P, Martinez-Garcia M, Torrents D, McMahon KD, Andersson SG, Stepanauskas R, Woyke T, Bertilsson S., ISME J 10(8), 2016
PMID: 26784354
Ancestral genome reconstruction identifies the evolutionary basis for trait acquisition in polyphosphate accumulating bacteria.
Oyserman BO, Moya F, Lawson CE, Garcia AL, Vogt M, Heffernen M, Noguera DR, McMahon KD., ISME J 10(12), 2016
PMID: 27128993
Evolution and adaptation of SAR11 and Cyanobium in a saline Tibetan lake.
Oh S, Zhang R, Wu QL, Liu WT., Environ Microbiol Rep 8(5), 2016
PMID: 27084571
Spatial and temporal patterns in the Pelagibacteraceae across an estuarine gradient.
Ortmann AC, Santos TT., FEMS Microbiol Ecol 92(9), 2016
PMID: 27387911
Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution.
Martijn J, Schulz F, Zaremba-Niedzwiedzka K, Viklund J, Stepanauskas R, Andersson SG, Horn M, Guy L, Ettema TJ., ISME J 9(11), 2015
PMID: 25848874
Selection Maintains Low Genomic GC Content in Marine SAR11 Lineages.
Luo H, Thompson LR, Stingl U, Hughes AL., Mol Biol Evol 32(10), 2015
PMID: 26116859
Single cell genomics of deep ocean bacteria.
Zhao W, Andersson SG., Trends Microbiol 22(5), 2014
PMID: 24684969
From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions.
Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh PL, Balderas MA, Saulnier DM, Mistretta TA, Devaraj S, Walter J, Versalovic J, Highlander SK., Genome Biol Evol 6(7), 2014
PMID: 24951561
A census of human RNA-binding proteins.
Gerstberger S, Hafner M, Tuschl T., Nat Rev Genet 15(12), 2014
PMID: 25365966

48 References

Daten bereitgestellt von Europe PubMed Central.

The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific
High intraspecific recombination rate in a native population of Candidatus pelagibacter ubique (SAR11).
Vergin KL, Tripp HJ, Wilhelm LJ, Denver DR, Rappe MS, Giovannoni SJ., Environ. Microbiol. 9(10), 2007
PMID: 17803769
Abundant SAR11 viruses in the ocean.
Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ., Nature 494(7437), 2013
PMID: 23407494
Streamlining and core genome conservation among highly divergent members of the SAR11 clade.
Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, Rappe MS., MBio 3(5), 2012
PMID: 22991429
Proteorhodopsin in the ubiquitous marine bacterium SAR11.
Giovannoni SJ, Bibbs L, Cho JC, Stapels MD, Desiderio R, Vergin KL, Rappe MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF., Nature 438(7064), 2005
PMID: 16267553
Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade.
Viklund J, Ettema TJ, Andersson SG., Mol. Biol. Evol. 29(2), 2011
PMID: 21900598
Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers
Novel estuarine bacterioplankton in rRNA operon libraries from the Chesapeake Bay
Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11).
Logares R, Brate J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S., Mol. Biol. Evol. 27(2), 2009
PMID: 19808864
Bacterial diversity in an arctic lake: a freshwater SAR11 cluster
Nearly identical 16S rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of globally distributed freshwater bacteria.
Zwart G, Hiorns WD, Methe BA, van Agterveld MP, Huismans R, Nold SC, Zehr JP, Laanbroek HJ., Syst. Appl. Microbiol. 21(4), 1998
PMID: 9924823
Infrequent marine-freshwater transitions in the microbial world.
Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K., Trends Microbiol. 17(9), 2009
PMID: 19726194
Single cell genomics: an individual look at microbes.
Stepanauskas R., Curr. Opin. Microbiol. 15(5), 2012
PMID: 23026140
Genomic sequencing of uncultured microorganisms from single cells.
Lasken RS., Nat. Rev. Microbiol. 10(9), 2012
PMID: 22890147
High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton.
Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME, Stepanauskas R., ISME J 6(1), 2011
PMID: 21716306
Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic time-series study site
Inference of microbial recombination rates from metagenomic data.
Johnson PL, Slatkin M., PLoS Genet. 5(10), 2009
PMID: 19798447
High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi.
Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G., Nat. Genet. 40(8), 2008
PMID: 18660809
Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis.
Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E., Proc. Natl. Acad. Sci. U.S.A. 96(24), 1999
PMID: 10570195
Evolution of pathogenicity in the Bacillus cereus group.
Didelot X, Barker M, Falush D, Priest FG., Syst. Appl. Microbiol. 32(2), 2009
PMID: 19200684
Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei.
Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG., J. Clin. Microbiol. 41(5), 2003
PMID: 12734250
Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved.
Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S., Nat. Genet. 42(6), 2010
PMID: 20495566
Genetic diversity of Bartonella quintana in macaques suggests zoonotic origin of trench fever.
Li H, Bai JY, Wang LY, Zeng L, Shi YS, Qiu ZL, Ye HH, Zhang XF, Lu QB, Kosoy M, Liu W, Cao WC., Mol. Ecol. 22(8), 2013
PMID: 23517327
Insights from genomic comparisons of genetically monomorphic bacterial pathogens.
Achtman M., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367(1590), 2012
PMID: 22312053
Explaining microbial population genomics through phage predation.
Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A., Nat. Rev. Microbiol. 7(11), 2009
PMID: 19834481
DOE Joint Genome Institute
Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
Zerbino DR, Birney E., Genome Res. 18(5), 2008
PMID: 18349386
High-quality draft assemblies of mammalian genomes from massively parallel sequence data.
Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB., Proc. Natl. Acad. Sci. U.S.A. 108(4), 2010
PMID: 21187386
OrthoMCL: identification of ortholog groups for eukaryotic genomes.
Li L, Stoeckert CJ Jr, Roos DS., Genome Res. 13(9), 2003
PMID: 12952885
MAFFT version 5: improvement in accuracy of multiple sequence alignment.
Katoh K, Kuma K, Toh H, Miyata T., Nucleic Acids Res. 33(2), 2005
PMID: 15661851
ProtTest 3: fast selection of best-fit models of protein evolution.
Darriba D, Taboada GL, Doallo R, Posada D., Bioinformatics 27(8), 2011
PMID: 21335321
TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations.
Abascal F, Zardoya R, Telford MJ., Nucleic Acids Res. 38(Web Server issue), 2010
PMID: 20435676
PAML 4: phylogenetic analysis by maximum likelihood.
Yang Z., Mol. Biol. Evol. 24(8), 2007
PMID: 17483113
Metagenomic sequencing of an in vitro-simulated microbial community.
Morgan JL, Darling AE, Eisen JA., PLoS ONE 5(4), 2010
PMID: 20419134
Inference of bacterial microevolution using multilocus sequence data.
Didelot X, Falush D., Genetics 175(3), 2006
PMID: 17151252
TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses.
Stover BC, Muller KF., BMC Bioinformatics 11(), 2010
PMID: 20051126
Accelerated Profile HMM Searches.
Eddy SR., PLoS Comput. Biol. 7(10), 2011
PMID: 22039361
Versatile and open software for comparing large genomes.
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL., Genome Biol. 5(2), 2004
PMID: 14759262
Recent developments in the MAFFT multiple sequence alignment program.
Katoh K, Toh H., Brief. Bioinformatics 9(4), 2008
PMID: 18372315
IMG: the Integrated Microbial Genomes database and comparative analysis system.
Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC., Nucleic Acids Res. 40(Database issue), 2012
PMID: 22194640
genoPlotR: comparative gene and genome visualization in R.
Guy L, Kultima JR, Andersson SG., Bioinformatics 26(18), 2010
PMID: 20624783


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 24286338
PubMed | Europe PMC

Suchen in

Google Scholar