Unraveling overlapping deletions by agglomerative clustering

Wittler R (2013)
BMC Genomics 14(Suppl 1): S12.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
OA correctedArticle.pdf
Abstract / Bemerkung
Background Structural variations in human genomes, such as deletions, play an important role in cancer development. Next-Generation Sequencing technologies have been central in providing ways to detect such variations. Methods like paired-end mapping allow to simultaneously analyze data from several samples in order to, e.g., distinguish tumor from patient specific variations. However, it has been shown that, especially in this setting, there is a need to explicitly take overlapping deletions into consideration. Existing tools have only minor capabilities to call overlapping deletions, unable to unravel complex signals to obtain consistent predictions. Result We present a first approach specifically designed to cluster short-read paired-end data into possibly overlapping deletion predictions. The method does not make any assumptions on the composition of the data, such as the number of samples, heterogeneity, polyploidy, etc. Taking paired ends mapped to a reference genome as input, it iteratively merges mappings to clusters based on a similarity score that takes both the putative location and size of a deletion into account. Conclusion We demonstrate that agglomerative clustering is suitable to predict deletions. Analyzing real data from three samples of a cancer patient, we found putatively overlapping deletions and observed that, as a side-effect, erroneous mappings are mostly identified as singleton clusters. An evaluation on simulated data shows, compared to other methods which can output overlapping clusters, high accuracy in separating overlapping from single deletions.
Erscheinungsjahr
2013
Zeitschriftentitel
BMC Genomics
Band
14
Ausgabe
Suppl 1
Art.-Nr.
S12
eISSN
1471-2164
Page URI
https://pub.uni-bielefeld.de/record/2552092

Zitieren

Wittler R. Unraveling overlapping deletions by agglomerative clustering. BMC Genomics. 2013;14(Suppl 1): S12.
Wittler, R. (2013). Unraveling overlapping deletions by agglomerative clustering. BMC Genomics, 14(Suppl 1), S12. doi:10.1186/1471-2164-14-S1-S12
Wittler, Roland. 2013. “Unraveling overlapping deletions by agglomerative clustering”. BMC Genomics 14 (Suppl 1): S12.
Wittler, R. (2013). Unraveling overlapping deletions by agglomerative clustering. BMC Genomics 14:S12.
Wittler, R., 2013. Unraveling overlapping deletions by agglomerative clustering. BMC Genomics, 14(Suppl 1): S12.
R. Wittler, “Unraveling overlapping deletions by agglomerative clustering”, BMC Genomics, vol. 14, 2013, : S12.
Wittler, R.: Unraveling overlapping deletions by agglomerative clustering. BMC Genomics. 14, : S12 (2013).
Wittler, Roland. “Unraveling overlapping deletions by agglomerative clustering”. BMC Genomics 14.Suppl 1 (2013): S12.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:09Z
MD5 Prüfsumme
af990f510b4a41b2955ac1da547e63cf
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:09Z
MD5 Prüfsumme
0e4d32b02f8a87ff6b2585626e403dc7


7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

TACCO, a Database Connecting Transcriptome Alterations, Pathway Alterations and Clinical Outcomes in Cancers.
Chou PH, Liao WC, Tsai KW, Chen KC, Yu JS, Chen TW., Sci Rep 9(1), 2019
PMID: 30846808
Comprehensive identification of microRNA arm selection preference in lung cancer: miR-324-5p and -3p serve oncogenic functions in lung cancer.
Lin MH, Chen YZ, Lee MY, Weng KP, Chang HT, Yu SY, Dong BJ, Kuo FR, Hung LT, Liu LF, Chen WS, Tsai KW., Oncol Lett 15(6), 2018
PMID: 29844840
Resolving Conflicting Predictions from Multimapping Reads.
Canzar S, Elbassioni K, Jones M, Mestre J., J Comput Biol 23(3), 2016
PMID: 26745826
MicroRNAs expression in normal and malignant colon tissues as biomarkers of colorectal cancer and in response to pomegranate extracts consumption: Critical issues to discern between modulatory effects and potential artefacts.
Nuñez-Sánchez MA, Dávalos A, González-Sarrías A, Casas-Agustench P, Visioli F, Monedero-Saiz T, García-Talavera NV, Gómez-Sánchez MB, Sánchez-Álvarez C, García-Albert AM, Rodríguez-Gil FJ, Ruiz-Marín M, Pastor-Quirante FA, Martínez-Díaz F, Tomás-Barberán FA, García-Conesa MT, Espín JC., Mol Nutr Food Res 59(10), 2015
PMID: 26105520
MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells.
Choo KB, Soon YL, Nguyen PN, Hiew MS, Huang CJ., J Biomed Sci 21(), 2014
PMID: 25287248
Haploid to diploid alignment for variation calling assessment.
Mäkinen V, Rahkola J., BMC Bioinformatics 14 Suppl 15(), 2013
PMID: 24564537

49 References

Daten bereitgestellt von Europe PubMed Central.

Global cancer statistics.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D., CA Cancer J Clin 61(2), 2011
PMID: 21296855
MicroRNA dysregulation in gastric cancer.
Pan HW, Li SC, Tsai KW., Curr. Pharm. Des. 19(7), 2013
PMID: 23092346
A microRNA expression signature of human solid tumors defines cancer gene targets.
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM., Proc. Natl. Acad. Sci. U.S.A. 103(7), 2006
PMID: 16461460
Identification of aberrantly expressed miRNAs in rectal cancer.
Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, Xiao D, Zeng Z, Chen X, Wu W., Oncol. Rep. 28(1), 2012
PMID: 22576798
Alterations of microRNAs contribute to colon carcinogenesis.
Schetter AJ, Harris CC., Semin. Oncol. 38(6), 2011
PMID: 22082759
Comprehensive analysis of microRNAs in breast cancer.
Chang HT, Li SC, Ho MR, Pan HW, Ger LP, Hu LY, Yu SY, Li WH, Tsai KW., BMC Genomics 13 Suppl 7(), 2012
PMID: 23281739
Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer.
Chen WS, Leung CM, Pan HW, Hu LY, Li SC, Ho MR, Tsai KW., Oncol. Rep. 28(3), 2012
PMID: 22766685
Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues.
Callari M, Dugo M, Musella V, Marchesi E, Chiorino G, Grand MM, Pierotti MA, Daidone MG, Canevari S, De Cecco L., PLoS ONE 7(9), 2012
PMID: 23028787
Differential expression of miRNAs in colorectal cancer: comparison of paired tumor tissue and adjacent normal mucosa using high-throughput sequencing.
Hamfjord J, Stangeland AM, Hughes T, Skrede ML, Tveit KM, Ikdahl T, Kure EH., PLoS ONE 7(4), 2012
PMID: 22529906
Overlapping expression of microRNAs in human embryonic colon and colorectal cancer.
Monzo M, Navarro A, Bandres E, Artells R, Moreno I, Gel B, Ibeas R, Moreno J, Martinez F, Diaz T, Martinez A, Balague O, Garcia-Foncillas J., Cell Res. 18(8), 2008
PMID: 18607389
Over- and under-expressed microRNAs in human colorectal cancer.
Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K, Mori M., Int. J. Oncol. 34(4), 2009
PMID: 19287964
Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis.
Wang YX, Zhang XY, Zhang BF, Yang CQ, Chen XM, Gao HJ., J Dig Dis 11(1), 2010
PMID: 20132431
Discovery of microRNA-mRNA modules via population-based probabilistic learning.
Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT., Bioinformatics 23(9), 2007
PMID: 17350973
Finding microRNA regulatory modules in human genome using rule induction.
Tran DH, Satou K, Ho TB., BMC Bioinformatics 9 Suppl 12(), 2008
PMID: 19091028
Prediction of regulatory modules comprising microRNAs and target genes.
Yoon S, De Micheli G., Bioinformatics 21 Suppl 2(), 2005
PMID: 16204133
Real-time quantification of microRNAs by stem-loop RT-PCR.
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ., Nucleic Acids Res. 33(20), 2005
PMID: 16314309
Analysis of targets and functions coregulated by microRNAs.
Chen SJ, Chen HC., Methods Mol. Biol. 676(), 2011
PMID: 20931401
MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP., Mol. Cell 27(1), 2007
PMID: 17612493
MicroRNA-143 and -145 in colon cancer.
Akao Y, Nakagawa Y, Naoe T., DNA Cell Biol. 26(5), 2007
PMID: 17504027
The impact of microRNAs on colorectal cancer.
Faber C, Kirchner T, Hlubek F., Virchows Arch. 454(4), 2009
PMID: 19288129
MicroRNA in colorectal cancer: from benchtop to bedside.
Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ., Carcinogenesis 32(3), 2010
PMID: 21081475
Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma.
Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, Zhang Q, Wang C, Zhang Q, Zhuang SM, Zheng L, Liang A, Tao W, Cao X., Cancer Cell 19(2), 2011
PMID: 21316602
MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus.
Juhila J, Sipila T, Icay K, Nicorici D, Ellonen P, Kallio A, Korpelainen E, Greco D, Hovatta I., PLoS ONE 6(6), 2011
PMID: 21731767
miRBase: tools for microRNA genomics.
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ., Nucleic Acids Res. 36(Database issue), 2007
PMID: 17991681
The microRNA.org resource: targets and expression.
Betel D, Wilson M, Gabow A, Marks DS, Sander C., Nucleic Acids Res. 36(Database issue), 2007
PMID: 18158296
Combinatorial microRNA target predictions.
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N., Nat. Genet. 37(5), 2005
PMID: 15806104
The role of site accessibility in microRNA target recognition.
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E., Nat. Genet. 39(10), 2007
PMID: 17893677
The impact of microRNAs on protein output.
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP., Nature 455(7209), 2008
PMID: 18668037
Nonmuscle myosin IIA is associated with poor prognosis of esophageal squamous cancer.
Xia ZK, Yuan YC, Yin N, Yin BL, Tan ZP, Hu YR., Dis. Esophagus 25(5), 2011
PMID: 21951916
The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells.
Derycke L, Stove C, Vercoutter-Edouart AS, De Wever O, Dolle L, Colpaert N, Depypere H, Michalski JC, Bracke M., Int. J. Dev. Biol. 55(7-9), 2011
PMID: 22161839
Identification of PP2A complexes and pathways involved in cell transformation.
Sablina AA, Hector M, Colpaert N, Hahn WC., Cancer Res. 70(24), 2010
PMID: 21159657
miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts.
Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku K, Utani A, Hirano A, Yamashita S., J. Invest. Dermatol. 132(6), 2012
PMID: 22358059
TGF-β-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts.
Honda N, Jinnin M, Kajihara I, Makino T, Makino K, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H., J. Immunol. 188(7), 2012
PMID: 22379029
MicroRNA-143 is critical regulator of cell cycle activity in stem cells with co-overexpression of Akt and angiopoietin-1 via transcriptional regulation of Erk5/cyclin D1 signaling
AUTHOR UNKNOWN, 2012
Repression of versican expression by microRNA-143.
Wang X, Hu G, Zhou J., J. Biol. Chem. 285(30), 2010
PMID: 20489207
Widespread changes in protein synthesis induced by microRNAs.
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N., Nature 455(7209), 2008
PMID: 18668040
MicroRNA dysregulation in colorectal cancer: a clinical perspective.
Dong Y, Wu WK, Wu CW, Sung JJ, Yu J, Ng SS., Br. J. Cancer 104(6), 2011
PMID: 21364594
MicroRNA networks in mouse lung organogenesis.
Dong J, Jiang G, Asmann YW, Tomaszek S, Jen J, Kislinger T, Wigle DA., PLoS ONE 5(5), 2010
PMID: 20520778
Identifying the target mRNAs of microRNAs in colorectal cancer.
Kim S, Choi M, Cho KH., Comput Biol Chem 33(1), 2008
PMID: 18723399
MicroRNA-182 and microRNA-200a control G-protein subunit alpha-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells
AUTHOR UNKNOWN, 2013
Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer.
Anglim PP, Galler JS, Koss MN, Hagen JA, Turla S, Campan M, Weisenberger DJ, Laird PW, Siegmund KD, Laird-Offringa IA., Mol. Cancer 7(), 2008
PMID: 18616821
Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes.
Watanabe Y, Kim HS, Castoro RJ, Chung W, Estecio MR, Kondo K, Guo Y, Ahmed SS, Toyota M, Itoh F, Suk KT, Cho MY, Shen L, Jelinek J, Issa JP., Gastroenterology 136(7), 2009
PMID: 19375421
CpG island hypermethylation in human astrocytomas.
Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D, Pfeifer GP., Cancer Res. 70(7), 2010
PMID: 20233874
DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status.
Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, Kaji E, Kondo Y, Yamamoto K., Inflamm. Bowel Dis. 17(9), 2011
PMID: 21830274
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23369161
PubMed | Europe PMC

Suchen in

Google Scholar