Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods
Neumann K, Emmerich C, Steil JJ (2012)
Journal of Intelligent Learning Systems and Applications 4(3): 230-246.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Einrichtung
Abstract / Bemerkung
Neural networks based on high-dimensional random feature generation have become popular under the notions extreme learning machine (ELM) and reservoir computing (RC). We provide an in-depth analysis of such networks with respect to feature selection, model complexity, and regularization. Starting from an ELM, we show how recurrent connections increase the effective complexity leading to reservoir networks. On the contrary, intrinsic plasticity (IP), a biologically inspired, unsupervised learning rule, acts as a task-specific feature regularizer, which tunes the effective model complexity. Combing both mechanisms in the framework of static reservoir computing, we achieve an excellent balance of feature complexity and regularization, which provides an impressive robustness to other model selection parameters like network size, initialization ranges, or the regularization parameter of the output learning. We demonstrate the advantages on several synthetic data as well as on benchmark tasks from the UCI repository providing practical insights how to use high-dimensional random networks for data processing
Stichworte
Extreme Learning Machine;
Reservoir Computing;
Model Selection;
Feature Selection;
Model Complexity;
Intrinsic Plasticity;
Regularization
Erscheinungsjahr
2012
Zeitschriftentitel
Journal of Intelligent Learning Systems and Applications
Band
4
Ausgabe
3
Seite(n)
230-246
ISSN
2150-8402
eISSN
2150-8410
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2508614
Zitieren
Neumann K, Emmerich C, Steil JJ. Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods. Journal of Intelligent Learning Systems and Applications. 2012;4(3):230-246.
Neumann, K., Emmerich, C., & Steil, J. J. (2012). Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods. Journal of Intelligent Learning Systems and Applications, 4(3), 230-246. doi:10.4236/jilsa.2012.43024
Neumann, Klaus, Emmerich, Christian, and Steil, Jochen J. 2012. “Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods”. Journal of Intelligent Learning Systems and Applications 4 (3): 230-246.
Neumann, K., Emmerich, C., and Steil, J. J. (2012). Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods. Journal of Intelligent Learning Systems and Applications 4, 230-246.
Neumann, K., Emmerich, C., & Steil, J.J., 2012. Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods. Journal of Intelligent Learning Systems and Applications, 4(3), p 230-246.
K. Neumann, C. Emmerich, and J.J. Steil, “Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods”, Journal of Intelligent Learning Systems and Applications, vol. 4, 2012, pp. 230-246.
Neumann, K., Emmerich, C., Steil, J.J.: Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods. Journal of Intelligent Learning Systems and Applications. 4, 230-246 (2012).
Neumann, Klaus, Emmerich, Christian, and Steil, Jochen J. “Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods”. Journal of Intelligent Learning Systems and Applications 4.3 (2012): 230-246.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:03Z
MD5 Prüfsumme
e5d7d4b6877f45fe14687b36d3c267af