Active tactile sampling by an insect in a step-climbing paradigm

Krause AF, Dürr V (2012)
Frontiers in Behavioral Neuroscience 6(30): 1-17.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Many insects actively explore their near-range environment with their antennae. Stick insects (Carausius morosus) rhythmically move their antennae during walking and respond to antennal touch by repetitive tactile sampling of the object. Despite its relevance for spatial orientation, neither the spatial sampling patterns nor the kinematics of antennation behaviour in insects are understood. Here we investigate unrestrained bilateral sampling movements during climbing of steps. The main objectives are: (1) How does the antennal contact pattern relate to particular object features? (2) How are the antennal joints coordinated during bilateral tactile sampling? We conducted motion capture experiments on freely climbing insects, using steps of different height. Tactile sampling was analyzed at the level of antennal joint angles. Moreover, we analysed contact patterns on the surfaces of both the obstacle and the antenna itself.Before the first contact, both antennae move in a broad, mostly elliptical exploratory pattern. After touching the obstacle, the pattern switches to a narrower and faster movement, caused by higher cycle frequencies and lower cycle amplitudes in all joints. Contact events were divided into wall- and edge contacts. Wall contacts occurred mostly with the distal third of the flagellum, which is flexible, whereas edge contacts often occurred proximally, where the flagellum is stiff.The movement of both antennae was found to be coordinated, exhibiting bilateral coupling of functionally analogous joints (e.g., left head-scape joint with right scape-pedicel joint) throughout tactile sampling. In comparison, bilateral coupling between homologous joints (e.g., both head-scape joints) was significantly weaker. Moreover, inter-joint coupling was significantly weaker during the contact episode than before.In summary, stick insects show contact-induced changes in frequency, amplitude and inter-joint coordination during tactile sampling of climbed obstacles.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Behavioral Neuroscience
Band
6
Ausgabe
30
Seite(n)
1-17
ISSN
eISSN
PUB-ID

Zitieren

Krause AF, Dürr V. Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioral Neuroscience. 2012;6(30):1-17.
Krause, A. F., & Dürr, V. (2012). Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioral Neuroscience, 6(30), 1-17. doi:10.3389/fnbeh.2012.00030
Krause, A. F., and Dürr, V. (2012). Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioral Neuroscience 6, 1-17.
Krause, A.F., & Dürr, V., 2012. Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioral Neuroscience, 6(30), p 1-17.
A.F. Krause and V. Dürr, “Active tactile sampling by an insect in a step-climbing paradigm”, Frontiers in Behavioral Neuroscience, vol. 6, 2012, pp. 1-17.
Krause, A.F., Dürr, V.: Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioral Neuroscience. 6, 1-17 (2012).
Krause, André Frank, and Dürr, Volker. “Active tactile sampling by an insect in a step-climbing paradigm”. Frontiers in Behavioral Neuroscience 6.30 (2012): 1-17.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Active touch sensing: finger tips, whiskers, and antennae.
Grant RA, Itskov PM, Towal RB, Prescott TJ., Front Behav Neurosci 8(), 2014
PMID: 24600364

47 References

Daten bereitgestellt von Europe PubMed Central.

Object localization with whiskers.
Ahissar E, Knutsen PM., Biol Cybern 98(6), 2008
PMID: 18491159
Tactile guidance of prey capture in Etruscan shrews.
Anjum F, Turni H, Mulder PG, van der Burg J, Brecht M., Proc. Natl. Acad. Sci. U.S.A. 103(44), 2006
PMID: 17060642
Large deflection analysis of a biomimetic lobster antenna due to contact and flow
Barnes T., Truong T., Adams G., McGruer N.., 2001
Mechanisms of stick insect locomotion in a gap-crossing paradigm.
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308
Stick insect locomotion in a complex environment: climbing over large gaps.
Blaesing B, Cruse H., J. Exp. Biol. 207(Pt 8), 2004
PMID: 15010478
Complete camera calibration toolbox for Matlab
Bouguet J.., 2005
Barrel cortex and whisker-mediated behaviors.
Brecht M., Curr. Opin. Neurobiol. 17(4), 2007
PMID: 17702566
The neurobiology of Etruscan shrew active touch.
Brecht M, Naumann R, Anjum F, Wolfe J, Munz M, Mende C, Roth-Alpermann C., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969684
The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions.
Comer CM, Parks L, Halvorsen MB, Breese-Terteling A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(2), 2003
PMID: 12607038
“Recherches sur la biologie et l' anatomie des Phasmes,”
de R.., 1901
Seal whiskers detect water movements
Dehnhardt G., Mauck B., Bleckmann H.., 1998
Whisker-mediated texture discrimination.
Diamond ME, von Heimendahl M, Arabzadeh E., PLoS Biol. 6(8), 2008
PMID: 18752356
Stick insects walking along inclined surfaces.
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706
“Biomechanics of active tactile sensing with an insect antenna,”
Dürr V., Dirks J.., 2006
Neuroethological concepts and their transfer to walking machines
Dürr V., Krause A., Schmitz J., Cruse H.., 2003
Tactile learning in the honeybee
Erber J., Kierzek S., Sander E., Grandy K.., 1998
Aerodynamic and mechanical properties of the antennae as air-current sense-organs in Locusta migratoria. I. Static characteristics
Gewecke M., Heinzel H.-G.., 1980
Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration.
Grant RA, Mitchinson B, Fox CW, Prescott TJ., J. Neurophysiol. 101(2), 2008
PMID: 19036871
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Aerodynamic and mechanical properties of the antennae as air-current sense-organs in Locusta migratoria. II. Dynamic characteristics
Heinzel H.-G., Gewecke M.., 1987
Flower petal microtexture is a tactile cue for bees.
Kevan PG, Lane MA., Proc. Natl. Acad. Sci. U.S.A. 82(14), 1985
PMID: 16593582
Tactile efficiency of insect antennae with two hinge joints.
Krause AF, Durr V., Biol Cybern 91(3), 2004
PMID: 15378371
Central drive and proprioceptive control of antennal movements in the walking stick insect
Krause A., Winkler A., Dürr V.., 2012
Flow sensing by pinniped whiskers.
Miersch L, Hanke W, Wieskotten S, Hanke FD, Oeffner J, Leder A, Brede M, Witte M, Dehnhardt G., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969689
Active vibrissal sensing in rodents and marsupials.
Mitchinson B, Grant RA, Arkley K, Rankov V, Perkon I, Prescott TJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969685
Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact.
Mitchinson B, Martin CJ, Grant RA, Prescott TJ., Proc. Biol. Sci. 274(1613), 2007
PMID: 17331893
Psychometric curve and behavioral strategies for whisker-based texture discrimination in rats.
Morita T, Kang H, Wolfe J, Jadhav SP, Feldman DE., PLoS ONE 6(6), 2011
PMID: 21673811
Slanted joint axes of the stick insect antenna: an adaptation to tactile acuity.
Mujagic S, Krause AF, Durr V., Naturwissenschaften 94(4), 2006
PMID: 17180615
Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain.
Nishino H, Nishikawa M, Yokohari F, Mizunami M., J. Comp. Neurol. 493(2), 2005
PMID: 16255033
Spatio-temporal patterns of antennal movements in the searching cockroach.
Okada J, Toh Y., J. Exp. Biol. 207(Pt 21), 2004
PMID: 15371477
Active tactile sensing for localization of objects by the cockroach antenna.
Okada J, Toh Y., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(7), 2006
PMID: 16450116
Obstacle perception by insect antennae during terrestrial locomotion
Pelletier Y., McLeod C.., 1994
Active touch sensing.
Prescott TJ, Diamond ME, Wing AM., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969680
A behavioral study of tactile localization in the crayfish Cherax destructor
Sandeman D., Varju D.., 1988
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Honey bees as a model for vision, perception, and cognition.
Srinivasan MV., Annu. Rev. Entomol. 55(), 2010
PMID: 19728835
Antennal movements and mechanoreception: neurobiology of active tactile sensors
Staudacher E., Gebhardt M., Dürr V.., 2005
A newly described neuropile in the deutocerebrum of the cricket: antennal afferents and descending interneurons
Staudacher E., Schildberger K.., 1999
Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(1), 2002
PMID: 11935229
“Fast ray-box intersection,”
Woo A.., 1990
“Motion analysis using stochastic optimisation and posture disambiguation,”
Zakotnik J., Dürr V.., 2005
A posture optimization algorithm for model-based motion capture of movement sequences.
Zakotnik J, Matheson T, Durr V., J. Neurosci. Methods 135(1-2), 2004
PMID: 15020088

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22754513
PubMed | Europe PMC

Suchen in

Google Scholar