Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction

Janssen S, Schudoma C, Steger G, Giegerich R (2011)
BMC Bioinformatics 12(1): 429.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Janssen, StefanUniBi ; Schudoma, Christian; Steger, Gerhard; Giegerich, RobertUniBi
Abstract / Bemerkung
BACKGROUND:Many bioinformatics tools for RNA secondary structure analysis are based on a thermodynamic model of RNA folding. They predict a single, "optimal" structure by free energy minimization, they enumerate near-optimal structures, they compute base pair probabilities and dot plots, representative structures of different abstract shapes, or Boltzmann probabilities of structures and shapes. Although all programs refer to the same physical model, they implement it with considerable variation for different tasks, and little is known about the effects of heuristic assumptions and model simplifications used by the programs on the outcome of the analysis.RESULTS:We extract four different models of the thermodynamic folding space which underlie the programs RNAfold, RNAshapes, and RNAsubopt. Their differences lie within the details of the energy model and the granularity of the folding space. We implement probabilistic shape analysis for all models, and introduce the shape probability shift as a robust measure of model similarity. Using four data sets derived from experimentally solved structures, we provide a quantitative evaluation of the model differences.CONCLUSIONS:We find that search space granularity affects the computed shape probabilities less than the over- or underapproximation of free energy by a simplified energy model. Still, the approximations perform similar enough to implementations of the full model to justify their continued use in settings where computational constraints call for simpler algorithms. On the side, we observe that the rarely used level 2 shapes, which predict the complete arrangement of helices, multiloops, internal loops and bulges, include the "true" shape in a rather small number of predicted high probability shapes. This calls for an investigation of new strategies to extract high probability members from the (very large) level 2 shape space of an RNA sequence. We provide implementations of all four models, written in a declarative style that makes them easy to be modified. Based on our study, future work on thermodynamic RNA folding may make a choice of model based on our empirical data. It can take our implementations as a starting point for further program development.
Erscheinungsjahr
2011
Zeitschriftentitel
BMC Bioinformatics
Band
12
Ausgabe
1
Art.-Nr.
429
ISSN
1471-2105
Page URI
https://pub.uni-bielefeld.de/record/2410526

Zitieren

Janssen S, Schudoma C, Steger G, Giegerich R. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics. 2011;12(1): 429.
Janssen, S., Schudoma, C., Steger, G., & Giegerich, R. (2011). Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics, 12(1), 429. doi:10.1186/1471-2105-12-429
Janssen, S., Schudoma, C., Steger, G., and Giegerich, R. (2011). Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics 12:429.
Janssen, S., et al., 2011. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics, 12(1): 429.
S. Janssen, et al., “Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction”, BMC Bioinformatics, vol. 12, 2011, : 429.
Janssen, S., Schudoma, C., Steger, G., Giegerich, R.: Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics. 12, : 429 (2011).
Janssen, Stefan, Schudoma, Christian, Steger, Gerhard, and Giegerich, Robert. “Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction”. BMC Bioinformatics 12.1 (2011): 429.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:58Z
MD5 Prüfsumme
85c792fe2ace3095c1be4936eb12f364

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The RNA shapes studio.
Janssen S, Giegerich R., Bioinformatics 31(3), 2015
PMID: 25273103
Thermodynamic matchers for the construction of the cuckoo RNA family.
Reinkensmeier J, Giegerich R., RNA Biol 12(2), 2015
PMID: 25779873
Analysing RNA-kinetics based on folding space abstraction.
Huang J, Voß B., BMC Bioinformatics 15(), 2014
PMID: 24575751
Bellman's GAP--a language and compiler for dynamic programming in sequence analysis.
Sauthoff G, Möhl M, Janssen S, Giegerich R., Bioinformatics 29(5), 2013
PMID: 23355290
A silent exonic SNP in kdm3a affects nucleic acids structure but does not regulate experimental autoimmune encephalomyelitis.
Gillett A, Bergman P, Parsa R, Bremges A, Giegerich R, Jagodic M., PLoS One 8(12), 2013
PMID: 24312603
Computational methods for ab initio detection of microRNAs.
Allmer J, Yousef M., Front Genet 3(), 2012
PMID: 23087705
Abstract folding space analysis based on helices.
Huang J, Backofen R, Voß B., RNA 18(12), 2012
PMID: 23104999

34 References

Daten bereitgestellt von Europe PubMed Central.

Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
Mathews DH, Sabina J, Zuker M, Turner DH., J. Mol. Biol. 288(5), 1999
PMID: 10329189
Fast Folding and Comparison of RNA Secondary Structures
AUTHOR UNKNOWN, 1994
Abstract shapes of RNA.
Giegerich R, Voss B, Rehmsmeier M., Nucleic Acids Res. 32(16), 2004
PMID: 15371549
Complete suboptimal folding of RNA and the stability of secondary structures.
Wuchty S, Fontana W, Hofacker IL, Schuster P., Biopolymers 49(2), 1999
PMID: 10070264
Complete probabilistic analysis of RNA shapes.
Voss B, Giegerich R, Rehmsmeier M., BMC Biol. 4(), 2006
PMID: 16480488

AUTHOR UNKNOWN, 1995
On quantitative effects of RNA shape abstraction.
Nebel ME, Scheid A., Theory Biosci. 128(4), 2009
PMID: 19756808
Shape based indexing for faster search of RNA family databases.
Janssen S, Reeder J, Giegerich R., BMC Bioinformatics 9(), 2008
PMID: 18312625
Stability of ribonucleic acid double-stranded helices.
Borer PN, Dengler B, Tinoco I Jr, Uhlenbeck OC., J. Mol. Biol. 86(4), 1974
PMID: 4427357
Long RNA dangling end has large energetic contribution to duplex stability.
Ohmichi T, Nakano S, Miyoshi D, Sugimoto N., J. Am. Chem. Soc. 124(35), 2002
PMID: 12197739
A discipline of dynamic programming over sequence data
AUTHOR UNKNOWN, 2004
Yield grammar analysis in the Bellman's GAP compiler
AUTHOR UNKNOWN, 2011
Bellman's GAP - A Declarative Language for Dynamic Programming
AUTHOR UNKNOWN, 2011
Analysis and classification of RNA tertiary structures.
Abraham M, Dror O, Nussinov R, Wolfson HJ., RNA 14(11), 2008
PMID: 18824509
The Protein Data Bank.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE., Nucleic Acids Res. 28(1), 2000
PMID: 10592235
The RCSB Protein Data Bank: redesigned web site and web services.
Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE., Nucleic Acids Res. 39(Database issue), 2010
PMID: 21036868
FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB., J Math Biol 56(1-2), 2007
PMID: 17694311
Frequency and isostericity of RNA base pairs.
Stombaugh J, Zirbel CL, Westhof E, Leontis NB., Nucleic Acids Res. 37(7), 2009
PMID: 19240142
Quantitative analysis of nucleic acid three-dimensional structures.
Gendron P, Lemieux S, Major F., J. Mol. Biol. 308(5), 2001
PMID: 11352582
RNA STRAND: the RNA secondary structure and statistical analysis database.
Andronescu M, Bereg V, Hoos HH, Condon A., BMC Bioinformatics 9(), 2008
PMID: 18700982
Prediction of RNA secondary structure using generalized centroid estimators.
Hamada M, Kiryu H, Sato K, Mituyama T, Asai K., Bioinformatics 25(4), 2008
PMID: 19095700
CONTRAfold: RNA secondary structure prediction without physics-based models.
Do CB, Woods DA, Batzoglou S., Bioinformatics 22(14), 2006
PMID: 16873527
Computational approaches for RNA energy parameter estimation.
Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP., RNA 16(12), 2010
PMID: 20940338
Faster computation of exact RNA shape probabilities.
Janssen S, Giegerich R., Bioinformatics 26(5), 2010
PMID: 20080511
UNAFold: software for nucleic acid folding and hybridization.
Markham NR, Zuker M., Methods Mol. Biol. 453(), 2008
PMID: 18712296
RNAstructure: software for RNA secondary structure prediction and analysis.
Reuter JS, Mathews DH., BMC Bioinformatics 11(), 2010
PMID: 20230624
Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding.
Walter AE, Turner DH, Kim J, Lyttle MH, Muller P, Mathews DH, Zuker M., Proc. Natl. Acad. Sci. U.S.A. 91(20), 1994
PMID: 7524072
Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs.
Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH., Biochemistry 37(42), 1998
PMID: 9778347
Strong correlation between SHAPE chemistry and the generalized NMR order parameter (S2) in RNA.
Gherghe CM, Shajani Z, Wilkinson KA, Varani G, Weeks KM., J. Am. Chem. Soc. 130(37), 2008
PMID: 18710236
A comprehensive comparison of comparative RNA structure prediction approaches.
Gardner PP, Giegerich R., BMC Bioinformatics 5(), 2004
PMID: 15458580

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22051375
PubMed | Europe PMC

Suchen in

Google Scholar