Robust Tracking of Human Hand Postures for Robot Teaching

Maycock J, Steffen JF, Haschke R, Ritter H (2011)
In: International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ: 2947-2952.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Campus/VPN mapping.pdf
Abstract / Bemerkung
To enable the creation of manual interaction databases, aiding the replication of dexterous capabilities with anthropomorphic robot hands by utilizing information how humans perform complex manipulation tasks, requires the capability to record and analyze large amounts of manual interaction sequences. For this goal we have studied and compared three mappings from captured human hand motion data to a simulated model, which allow for robust and accurate real-time hand posture tracking. We evaluate the effectiveness of these mappings and discuss their pros and cons in various real-world scenarios. The first method is based on data glove data and aims for direct gaging of hand joints. The other two methods utilize a VICON motion tracking system which monitors markers placed on all finger segments. Here we compare two approaches: a direct computation of hand postures from angles between adjacent markers and an iterative inverse kinematics approach to optimally reproduce fingertip positions. For a quantitative evaluation, we employ a technique of ”calibration objects” to obtain a reliable ground truth of task-relevant hand posture data.
Stichworte
Hand tracking; Manual Interaction databases; Robot teaching
Erscheinungsjahr
2011
Titel des Konferenzbandes
International Conference on Intelligent Robots and Systems (IROS)
Seite(n)
2947-2952
Konferenz
IROS 2011
Konferenzort
San Francisco
Konferenzdatum
2011-09-25
Page URI
https://pub.uni-bielefeld.de/record/2280540

Zitieren

Maycock J, Steffen JF, Haschke R, Ritter H. Robust Tracking of Human Hand Postures for Robot Teaching. In: International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ; 2011: 2947-2952.
Maycock, J., Steffen, J. F., Haschke, R., & Ritter, H. (2011). Robust Tracking of Human Hand Postures for Robot Teaching. International Conference on Intelligent Robots and Systems (IROS), 2947-2952. IEEE/RSJ. https://doi.org/10.1109/iros.2011.6095004
Maycock, Jonathan, Steffen, Jan Frederik, Haschke, Robert, and Ritter, Helge. 2011. “Robust Tracking of Human Hand Postures for Robot Teaching”. In International Conference on Intelligent Robots and Systems (IROS), 2947-2952. IEEE/RSJ.
Maycock, J., Steffen, J. F., Haschke, R., and Ritter, H. (2011). “Robust Tracking of Human Hand Postures for Robot Teaching” in International Conference on Intelligent Robots and Systems (IROS) (IEEE/RSJ), 2947-2952.
Maycock, J., et al., 2011. Robust Tracking of Human Hand Postures for Robot Teaching. In International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, pp. 2947-2952.
J. Maycock, et al., “Robust Tracking of Human Hand Postures for Robot Teaching”, International Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ, 2011, pp.2947-2952.
Maycock, J., Steffen, J.F., Haschke, R., Ritter, H.: Robust Tracking of Human Hand Postures for Robot Teaching. International Conference on Intelligent Robots and Systems (IROS). p. 2947-2952. IEEE/RSJ (2011).
Maycock, Jonathan, Steffen, Jan Frederik, Haschke, Robert, and Ritter, Helge. “Robust Tracking of Human Hand Postures for Robot Teaching”. International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ, 2011. 2947-2952.
Volltext(e)
Name
mapping.pdf
Access Level
Campus/VPN UniBi Only
Zuletzt Hochgeladen
2019-09-06T08:57:34Z
MD5 Prüfsumme
de1022ed21a23268cb9bcc89c82752a4


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar