Insect walking is based on a decentralized architecture revealing a simple and robust controller

Cruse H, Dürr V, Schmitz J (2007)
Philos Transact A Math Phys Eng Sci 365(1850): 221-250.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Control of walking in rugged terrain requires one to incorporate different issues, such as the mechanical properties of legs and muscles, the neuronal control structures for the single leg, the mechanics and neuronal control structures for the coordination between legs, as well as central decisions that are based on external information and on internal states. Walking in predictable environments and fast running, to a large degree, rely on muscle mechanics. Conversely, slow walking in unpredictable terrain, e.g. climbing in rugged structures, has to rely on neuronal systems that monitor and intelligently react to specific properties of the environment. An arthropod model system that shows the latter abilities is the stick insect, based on which this review will be focused. An insect, when moving its six legs, has to control 18 joints, three per leg, and therefore has to control 18 degrees of freedom (d.f.). As the body position in space is determined by 6 d.f. only, there are 12 d.f. open to be selected. Therefore, a fundamental problem is as to how these extra d.f. are controlled. Based mainly on behavioural experiments and simulation studies, but also including neurophysiological results, the following control structures have been revealed. Legs act as basically independent systems. The quasi-rhythmic movement of the individual leg can be described to result from a structure that exploits mechanical coupling of the legs via the ground and the body. Furthermore, neuronally mediated influences act locally between neighbouring legs, leading to the emergence of insect-type gaits. The underlying controller can be described as a free gait controller. Cooperation of the legs being in stance mode is assumed to be based on mechanical coupling plus local positive feedback controllers. These controllers, acting on individual leg joints, transform a passive displacement of a joint into an active movement, generating synergistic assistance reflexes in all mechanically coupled joints. This architecture is summarized in the form of the artificial neural network, Walknet , that is heavily dependent on sensory feedback at the proprioceptive level. Exteroceptive feedback is exploited for global decisions, such as the walking direction and velocity.
Stichworte
walking Environment Neural network ENVIRONMENTS Information coordination Mechanics Muscle muscles leg legs Walking control climbing SYSTEMS system Arthropod model velocity direction LEVEL proprioceptive sensory walknet Artificial Neural Network REFLEXES Reflex Assistance reflex positive feedback Controller Gait movement ACT Simulation POSITION body JOINT Review Stick Insect insect running; pattern generation; insect; leg coordination; leg movement; gait
Erscheinungsjahr
2007
Zeitschriftentitel
Philos Transact A Math Phys Eng Sci
Band
365
Ausgabe
1850
Seite(n)
221-250
ISSN
1364-503X
eISSN
1471-2962
Page URI
https://pub.uni-bielefeld.de/record/1596597

Zitieren

Cruse H, Dürr V, Schmitz J. Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci. 2007;365(1850):221-250.
Cruse, H., Dürr, V., & Schmitz, J. (2007). Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci, 365(1850), 221-250. https://doi.org/10.1098/rsta.2006.1913
Cruse, Holk, Dürr, Volker, and Schmitz, Josef. 2007. “Insect walking is based on a decentralized architecture revealing a simple and robust controller”. Philos Transact A Math Phys Eng Sci 365 (1850): 221-250.
Cruse, H., Dürr, V., and Schmitz, J. (2007). Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci 365, 221-250.
Cruse, H., Dürr, V., & Schmitz, J., 2007. Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci, 365(1850), p 221-250.
H. Cruse, V. Dürr, and J. Schmitz, “Insect walking is based on a decentralized architecture revealing a simple and robust controller”, Philos Transact A Math Phys Eng Sci, vol. 365, 2007, pp. 221-250.
Cruse, H., Dürr, V., Schmitz, J.: Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci. 365, 221-250 (2007).
Cruse, Holk, Dürr, Volker, and Schmitz, Josef. “Insect walking is based on a decentralized architecture revealing a simple and robust controller”. Philos Transact A Math Phys Eng Sci 365.1850 (2007): 221-250.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Topology optimization and 3D printing of multimaterial magnetic actuators and displays.
Sundaram S, Skouras M, Kim DS, van den Heuvel L, Matusik W., Sci Adv 5(7), 2019
PMID: 31309144
Information-based centralization of locomotion in animals and robots.
Neveln ID, Tirumalai A, Sponberg S., Nat Commun 10(1), 2019
PMID: 31409794
Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
Advantage of straight walk instability in turning maneuver of multilegged locomotion: a robotics approach.
Aoi S, Tanaka T, Fujiki S, Funato T, Senda K, Tsuchiya K., Sci Rep 6(), 2016
PMID: 27444746
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Spinal circuits can accommodate interaction torques during multijoint limb movements.
Buhrmann T, Di Paolo EA., Front Comput Neurosci 8(), 2014
PMID: 25426061
Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.
Revzen S, Burden SA, Moore TY, Mongeau JM, Full RJ., Biol Cybern 107(2), 2013
PMID: 23371006
A single muscle's multifunctional control potential of body dynamics for postural control and running.
Sponberg S, Spence AJ, Mullens CH, Full RJ., Philos Trans R Soc Lond B Biol Sci 366(1570), 2011
PMID: 21502129
Shifts in a single muscle's control potential of body dynamics are determined by mechanical feedback.
Sponberg S, Libby T, Mullens CH, Full RJ., Philos Trans R Soc Lond B Biol Sci 366(1570), 2011
PMID: 21502130
Neural activity in the central complex of the insect brain is linked to locomotor changes.
Bender JA, Pollack AJ, Ritzmann RE., Curr Biol 20(10), 2010
PMID: 20451382

125 References

Daten bereitgestellt von Europe PubMed Central.

Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042

Bartling, J. Exp. Biol. 203(7), 2000

BASSLER, J. Exp. Biol. 136(1), 1988
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677

BASSLER, J. Exp. Biol. 105(1), 1983

AUTHOR UNKNOWN, J. Insect Physiol. 25(), 1979
Local control of leg movements and motor patterns during grooming in locusts.
Berkowitz A, Laurent G., J. Neurosci. 16(24), 1996
PMID: 8987832

AUTHOR UNKNOWN, ADAPT BEHAV 14(), 2006
Mechanisms of stick insect locomotion in a gap-crossing paradigm.
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 173(), 1993

AUTHOR UNKNOWN, J COMP PHYSIOL 100(), 1975

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 169(), 1991
Local circuits for the control of leg movements in an insect.
Burrows M., Trends Neurosci. 15(6), 1992
PMID: 1378667

Buschges, J. Exp. Biol. 198(2), 1995

AUTHOR UNKNOWN, J COMP PHYSIOL 139(), 1980

AUTHOR UNKNOWN, Biol Cybern 43(), 1982
The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions.
Comer CM, Parks L, Halvorsen MB, Breese-Terteling A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(2), 2003
PMID: 12607038

AUTHOR UNKNOWN, Biol Cybern 24(), 1976

AUTHOR UNKNOWN, J COMP PHYSIOL 112(), 1976

AUTHOR UNKNOWN, Physiol. Entomol. 4(), 1979

Cruse, J. Exp. Biol. 114(1), 1985

CRUSE, J. Exp. Biol. 116(1), 1985
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
The functional sense of central oscillations in walking.
Cruse H., Biol Cybern 86(4), 2002
PMID: 11956808

AUTHOR UNKNOWN, Cogn Sci 27(), 2003

AUTHOR UNKNOWN, J. Insect Physiol. 41(), 1995

CRUSE, J. Exp. Biol. 101(1), 1982

CRUSE, J. Exp. Biol. 144(1), 1989

AUTHOR UNKNOWN, Biol Cybern 36(), 1980

CRUSE, J. Exp. Biol. 102(1), 1983

CRUSE, J. Exp. Biol. 138(1), 1988
Coordination of the legs of a slow-walking cat.
Cruse H, Warnecke H., Exp Brain Res 89(1), 1992
PMID: 1601093

AUTHOR UNKNOWN, J COMP PHYSIOL 154(), 1984

AUTHOR UNKNOWN, Biol Cybern 61(), 1989

Cruse, J. Exp. Biol. 181(1), 1993
A modular artificial neural net for controlling a six-legged walking system.
Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M., Biol Cybern 72(5), 1995
PMID: 7734551

AUTHOR UNKNOWN, ADAPT BEHAV 3(), 1995
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 155(), 1984

AUTHOR UNKNOWN, Biol Cybern 63(), 1990

AUTHOR UNKNOWN, Physiol. Entomol. 17(), 1992

DEAN, J. Exp. Biol. 103(1), 1983
Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
Degtyarenko AM, Simon ES, Norden-Krichmar T, Burke RE., J. Neurophysiol. 79(1), 1998
PMID: 9425213
Neural basis of rhythmic behavior in animals.
Delcomyn F., Science 210(4469), 1980
PMID: 7423199
Stick insects walking along inclined surfaces.
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706
Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
Donelan JM, Pearson KG., J. Neurophysiol. 92(4), 2004
PMID: 15381742

Durr, J. Exp. Biol. 204(9), 2001

AUTHOR UNKNOWN, INT J ROBOT RES 22(), 2003

AUTHOR UNKNOWN, PHIL TRANS R SOC B 354(), 1999
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726

AUTHOR UNKNOWN, ADAPT BEHAV 1(), 1993

AUTHOR UNKNOWN, ROBOT AUTON SYST 18(), 1996
Leg design in hexapedal runners.
Full RJ, Blickhan R, Ting LH., J. Exp. Biol. 158(), 1991
PMID: 1919412
Quantifying dynamic stability and maneuverability in legged locomotion.
Full RJ, Kubow T, Schmitt J, Holmes P, Koditschek D., Integr. Comp. Biol. 42(1), 2002
PMID: 21708704

AUTHOR UNKNOWN, J DYNAMIC SYST MEAS CONTROL 113(), 1991
Positive force feedback in bouncing gaits?
Geyer H, Seyfarth A, Blickhan R., Proc. Biol. Sci. 270(1529), 2003
PMID: 14561282

AUTHOR UNKNOWN, Naturwissenschaften 73(), 1986

AUTHOR UNKNOWN, INT J ROBOT RES 9(), 1990

GRAHAM, J. Exp. Biol. 73(1), 1978

AUTHOR UNKNOWN, Biol Cybern 32(), 1979

AUTHOR UNKNOWN, ADV INSECT PHYSIOL 18(), 1985
Neural networks that co-ordinate locomotion and body orientation in lamprey.
Grillner S, Deliagina T, Ekeberg O , el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallen P., Trends Neurosci. 18(6), 1995
PMID: 7571002
Complex auditory behaviour emerges from simple reactive steering.
Hedwig B, Poulet JF., Nature 430(7001), 2004
PMID: 15306810
Multisensory control in insect oculomotor systems.
Hengstenberg R., Rev Oculomot Res 5(), 1993
PMID: 8420553

AUTHOR UNKNOWN, Ergeb Physiol 42(), 1939

AUTHOR UNKNOWN, Pflugers Arch. 246(), 1943

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 142(), 1981

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 150(), 1983

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 181(), 1997
Many-legged maneuverability: dynamics of turning in hexapods
Jindrich DL, Full RJ., J. Exp. Biol. 202 (Pt 12)(), 1999
PMID: 10333507

Jindrich, J. Exp. Biol. 205(18), 2002
The cerebellum and VOR/OKR learning models.
Kawato M, Gomi H., Trends Neurosci. 15(11), 1992
PMID: 1281352

AUTHOR UNKNOWN, ADAPT BEHAV 9(), 2002

AUTHOR UNKNOWN, IEEE TRANS ROBOT AUTOMAT 6(), 1990

AUTHOR UNKNOWN, PROC SEVENTH INT CONF ON SIMULATION OF ADAPTIVE BEHAVIOR FROM ANIMALS TO ANIMATS 7(), 2002

AUTHOR UNKNOWN, ADAPT BEHAV 13(), 2005
[Wind-orientation in running insects]
Linsenmair KE., Fortschr Zool 21(2), 1973
PMID: 4762859
Central pattern generators and the control of rhythmic movements.
Marder E, Bucher D., Curr. Biol. 11(23), 2001
PMID: 11728329

Matheson, J. Exp. Biol. 200(1), 1997
Load compensation in targeted limb movements of an insect.
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699

AUTHOR UNKNOWN, ADAPT BEHAV 1(), 1992

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 187(10), 2001

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 187(), 2000
Common principles of motor control in vertebrates and invertebrates.
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894
Common principles of motor control in vertebrates and invertebrates.
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 160(), 1987

AUTHOR UNKNOWN, Physiol. Entomol. 19(), 1994

AUTHOR UNKNOWN, ROBOT AUTONOM SYST 14(), 1995
Goal-driven behavioral adaptations in gap-climbing Drosophila.
Pick S, Strauss R., Curr. Biol. 15(16), 2005
PMID: 16111941
Implications of positive feedback in the control of movement.
Prochazka A, Gillard D, Bennett DJ., J. Neurophysiol. 77(6), 1997
PMID: 9212271
Positive force feedback control of muscles.
Prochazka A, Gillard D, Bennett DJ., J. Neurophysiol. 77(6), 1997
PMID: 9212270

Schmitz, J. Exp. Biol. 183(1), 1993

SCHMITZ, J. Exp. Biol. 143(1), 1989

AUTHOR UNKNOWN, VERH DT ZOOL GES 88(), 1995
A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties.
Schmitz J, Dean J, Kindermann T, Schumm M, Cruse H., Biol. Bull. 200(2), 2001
PMID: 11341583

AUTHOR UNKNOWN, IEEE TRANS SYST MAN CYBERN PART B CYBERN 35(), 2005

AUTHOR UNKNOWN, INT J ROBOT RES 25(), 2006
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135

AUTHOR UNKNOWN, ADV INSECT PHYSIOL 32(), 2005

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 174(), 1994
Dynamic and static stability in hexapedal runners.
Ting LH, Blickhan R, Full RJ., J. Exp. Biol. 197(), 1994
PMID: 7852905

Watson, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 182(1), 1998

AUTHOR UNKNOWN, Z VERGL PHYSIOL 48(), 1964
Insect walking.
Wilson DM., Annu. Rev. Entomol. 11(), 1966
PMID: 5321575

AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 160(), 1987

AUTHOR UNKNOWN, Nat. Neurosci. 3(), 2000

AUTHOR UNKNOWN, Biol Cybern 90(), 2004
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
STEPPING PATTERNS IN ANTS - INFLUENCE OF SPEED AND CURVATURE
Zollikofer C., J. Exp. Biol. 192(1), 1994
PMID: 9317406
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17148058
PubMed | Europe PMC

Suchen in

Google Scholar