Insect walking is based on a decentralized architecture revealing a simple and robust controller
Cruse H, Dürr V, Schmitz J (2007)
Philos Transact A Math Phys Eng Sci 365(1850): 221-250.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Control of walking in rugged terrain requires one to incorporate different issues, such as the mechanical properties of legs and muscles, the neuronal control structures for the single leg, the mechanics and neuronal control structures for the coordination between legs, as well as central decisions that are based on external information and on internal states. Walking in predictable environments and fast running, to a large degree, rely on muscle mechanics. Conversely, slow walking in unpredictable terrain, e.g. climbing in rugged structures, has to rely on neuronal systems that monitor and intelligently react to specific properties of the environment. An arthropod model system that shows the latter abilities is the stick insect, based on which this review will be focused. An insect, when moving its six legs, has to control 18 joints, three per leg, and therefore has to control 18 degrees of freedom (d.f.). As the body position in space is determined by 6 d.f. only, there are 12 d.f. open to be selected. Therefore, a fundamental problem is as to how these extra d.f. are controlled. Based mainly on behavioural experiments and simulation studies, but also including neurophysiological results, the following control structures have been revealed. Legs act as basically independent systems. The quasi-rhythmic movement of the individual leg can be described to result from a structure that exploits mechanical coupling of the legs via the ground and the body. Furthermore, neuronally mediated influences act locally between neighbouring legs, leading to the emergence of insect-type gaits. The underlying controller can be described as a free gait controller. Cooperation of the legs being in stance mode is assumed to be based on mechanical coupling plus local positive feedback controllers. These controllers, acting on individual leg joints, transform a passive displacement of a joint into an active movement, generating synergistic assistance reflexes in all mechanically coupled joints. This architecture is summarized in the form of the artificial neural network, Walknet , that is heavily dependent on sensory feedback at the proprioceptive level. Exteroceptive feedback is exploited for global decisions, such as the walking direction and velocity.
Stichworte
walking
Environment Neural network ENVIRONMENTS Information coordination Mechanics Muscle muscles leg legs Walking control climbing SYSTEMS system Arthropod model velocity direction LEVEL proprioceptive sensory walknet Artificial Neural Network REFLEXES Reflex Assistance reflex positive feedback Controller Gait movement ACT Simulation POSITION body JOINT Review Stick Insect insect running;
pattern generation;
insect;
leg coordination;
leg movement;
gait
Erscheinungsjahr
2007
Zeitschriftentitel
Philos Transact A Math Phys Eng Sci
Band
365
Ausgabe
1850
Seite(n)
221-250
ISSN
1364-503X
eISSN
1471-2962
Page URI
https://pub.uni-bielefeld.de/record/1596597
Zitieren
Cruse H, Dürr V, Schmitz J. Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci. 2007;365(1850):221-250.
Cruse, H., Dürr, V., & Schmitz, J. (2007). Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci, 365(1850), 221-250. https://doi.org/10.1098/rsta.2006.1913
Cruse, Holk, Dürr, Volker, and Schmitz, Josef. 2007. “Insect walking is based on a decentralized architecture revealing a simple and robust controller”. Philos Transact A Math Phys Eng Sci 365 (1850): 221-250.
Cruse, H., Dürr, V., and Schmitz, J. (2007). Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci 365, 221-250.
Cruse, H., Dürr, V., & Schmitz, J., 2007. Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci, 365(1850), p 221-250.
H. Cruse, V. Dürr, and J. Schmitz, “Insect walking is based on a decentralized architecture revealing a simple and robust controller”, Philos Transact A Math Phys Eng Sci, vol. 365, 2007, pp. 221-250.
Cruse, H., Dürr, V., Schmitz, J.: Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philos Transact A Math Phys Eng Sci. 365, 221-250 (2007).
Cruse, Holk, Dürr, Volker, and Schmitz, Josef. “Insect walking is based on a decentralized architecture revealing a simple and robust controller”. Philos Transact A Math Phys Eng Sci 365.1850 (2007): 221-250.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
18 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Topology optimization and 3D printing of multimaterial magnetic actuators and displays.
Sundaram S, Skouras M, Kim DS, van den Heuvel L, Matusik W., Sci Adv 5(7), 2019
PMID: 31309144
Sundaram S, Skouras M, Kim DS, van den Heuvel L, Matusik W., Sci Adv 5(7), 2019
PMID: 31309144
Information-based centralization of locomotion in animals and robots.
Neveln ID, Tirumalai A, Sponberg S., Nat Commun 10(1), 2019
PMID: 31409794
Neveln ID, Tirumalai A, Sponberg S., Nat Commun 10(1), 2019
PMID: 31409794
Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms.
Bidaye SS, Bockemühl T, Büschges A., J Neurophysiol 119(2), 2018
PMID: 29070634
Bidaye SS, Bockemühl T, Büschges A., J Neurophysiol 119(2), 2018
PMID: 29070634
Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
Speed dependent phase shifts and gait changes in cockroaches running on substrates of different slipperiness.
Weihmann T, Brun PG, Pycroft E., Front Zool 14(), 2017
PMID: 29225659
Weihmann T, Brun PG, Pycroft E., Front Zool 14(), 2017
PMID: 29225659
How to find home backwards? Locomotion and inter-leg coordination during rearward walking of Cataglyphis fortis desert ants.
Pfeffer SE, Wahl VL, Wittlinger M., J Exp Biol 219(pt 14), 2016
PMID: 27445398
Pfeffer SE, Wahl VL, Wittlinger M., J Exp Biol 219(pt 14), 2016
PMID: 27445398
Advantage of straight walk instability in turning maneuver of multilegged locomotion: a robotics approach.
Aoi S, Tanaka T, Fujiki S, Funato T, Senda K, Tsuchiya K., Sci Rep 6(), 2016
PMID: 27444746
Aoi S, Tanaka T, Fujiki S, Funato T, Senda K, Tsuchiya K., Sci Rep 6(), 2016
PMID: 27444746
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Spinal circuits can accommodate interaction torques during multijoint limb movements.
Buhrmann T, Di Paolo EA., Front Comput Neurosci 8(), 2014
PMID: 25426061
Buhrmann T, Di Paolo EA., Front Comput Neurosci 8(), 2014
PMID: 25426061
Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster.
Mendes CS, Bartos I, Akay T, Márka S, Mann RS., Elife 2(), 2013
PMID: 23326642
Mendes CS, Bartos I, Akay T, Márka S, Mann RS., Elife 2(), 2013
PMID: 23326642
Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.
Revzen S, Burden SA, Moore TY, Mongeau JM, Full RJ., Biol Cybern 107(2), 2013
PMID: 23371006
Revzen S, Burden SA, Moore TY, Mongeau JM, Full RJ., Biol Cybern 107(2), 2013
PMID: 23371006
Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
Manoonpong P, Parlitz U, Wörgötter F., Front Neural Circuits 7(), 2013
PMID: 23408775
Manoonpong P, Parlitz U, Wörgötter F., Front Neural Circuits 7(), 2013
PMID: 23408775
Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
von Twickel A, Büschges A, Pasemann F., Biol Cybern 104(1-2), 2011
PMID: 21327828
von Twickel A, Büschges A, Pasemann F., Biol Cybern 104(1-2), 2011
PMID: 21327828
A single muscle's multifunctional control potential of body dynamics for postural control and running.
Sponberg S, Spence AJ, Mullens CH, Full RJ., Philos Trans R Soc Lond B Biol Sci 366(1570), 2011
PMID: 21502129
Sponberg S, Spence AJ, Mullens CH, Full RJ., Philos Trans R Soc Lond B Biol Sci 366(1570), 2011
PMID: 21502129
Shifts in a single muscle's control potential of body dynamics are determined by mechanical feedback.
Sponberg S, Libby T, Mullens CH, Full RJ., Philos Trans R Soc Lond B Biol Sci 366(1570), 2011
PMID: 21502130
Sponberg S, Libby T, Mullens CH, Full RJ., Philos Trans R Soc Lond B Biol Sci 366(1570), 2011
PMID: 21502130
From neuron to behavior: dynamic equation-based prediction of biological processes in motor control.
Daun-Gruhn S, Büschges A., Biol Cybern 105(1), 2011
PMID: 21769740
Daun-Gruhn S, Büschges A., Biol Cybern 105(1), 2011
PMID: 21769740
Neural activity in the central complex of the insect brain is linked to locomotor changes.
Bender JA, Pollack AJ, Ritzmann RE., Curr Biol 20(10), 2010
PMID: 20451382
Bender JA, Pollack AJ, Ritzmann RE., Curr Biol 20(10), 2010
PMID: 20451382
Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
Zill SN, Keller BR, Duke ER., J Neurophysiol 101(5), 2009
PMID: 19261716
Zill SN, Keller BR, Duke ER., J Neurophysiol 101(5), 2009
PMID: 19261716
125 References
Daten bereitgestellt von Europe PubMed Central.
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
Akay T, Haehn S, Schmitz J, Buschges A., J. Neurophysiol. 92(1), 2004
PMID: 14999042
Bartling, J. Exp. Biol. 203(7), 2000
[Significance of antennas for the perception of gravity direction in the walking stick grasshopper Carausius morosus].
Bassler U., Kybernetik 9(1), 1971
PMID: 5563465
Bassler U., Kybernetik 9(1), 1971
PMID: 5563465
BASSLER, J. Exp. Biol. 136(1), 1988
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
BASSLER, J. Exp. Biol. 105(1), 1983
AUTHOR UNKNOWN, J. Insect Physiol. 25(), 1979
Local control of leg movements and motor patterns during grooming in locusts.
Berkowitz A, Laurent G., J. Neurosci. 16(24), 1996
PMID: 8987832
Berkowitz A, Laurent G., J. Neurosci. 16(24), 1996
PMID: 8987832
AUTHOR UNKNOWN, ADAPT BEHAV 14(), 2006
Mechanisms of stick insect locomotion in a gap-crossing paradigm.
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 173(), 1993
AUTHOR UNKNOWN, J COMP PHYSIOL 100(), 1975
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 169(), 1991
Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position.
Brunn DE, Dean J., J. Neurophysiol. 72(3), 1994
PMID: 7807205
Brunn DE, Dean J., J. Neurophysiol. 72(3), 1994
PMID: 7807205
Local circuits for the control of leg movements in an insect.
Burrows M., Trends Neurosci. 15(6), 1992
PMID: 1378667
Burrows M., Trends Neurosci. 15(6), 1992
PMID: 1378667
Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
Buschges A., J. Neurophysiol. 93(3), 2005
PMID: 15738270
Buschges A., J. Neurophysiol. 93(3), 2005
PMID: 15738270
Buschges, J. Exp. Biol. 198(2), 1995
AUTHOR UNKNOWN, J COMP PHYSIOL 139(), 1980
The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment.
Chiel HJ, Beer RD., Trends Neurosci. 20(12), 1997
PMID: 9416664
Chiel HJ, Beer RD., Trends Neurosci. 20(12), 1997
PMID: 9416664
AUTHOR UNKNOWN, Biol Cybern 43(), 1982
The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions.
Comer CM, Parks L, Halvorsen MB, Breese-Terteling A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(2), 2003
PMID: 12607038
Comer CM, Parks L, Halvorsen MB, Breese-Terteling A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(2), 2003
PMID: 12607038
AUTHOR UNKNOWN, Biol Cybern 24(), 1976
AUTHOR UNKNOWN, J COMP PHYSIOL 112(), 1976
AUTHOR UNKNOWN, Physiol. Entomol. 4(), 1979
Cruse, J. Exp. Biol. 114(1), 1985
CRUSE, J. Exp. Biol. 116(1), 1985
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
The functional sense of central oscillations in walking.
Cruse H., Biol Cybern 86(4), 2002
PMID: 11956808
Cruse H., Biol Cybern 86(4), 2002
PMID: 11956808
AUTHOR UNKNOWN, Cogn Sci 27(), 2003
AUTHOR UNKNOWN, J. Insect Physiol. 41(), 1995
CRUSE, J. Exp. Biol. 101(1), 1982
CRUSE, J. Exp. Biol. 144(1), 1989
AUTHOR UNKNOWN, Biol Cybern 36(), 1980
CRUSE, J. Exp. Biol. 102(1), 1983
CRUSE, J. Exp. Biol. 138(1), 1988
Coordination of the legs of a slow-walking cat.
Cruse H, Warnecke H., Exp Brain Res 89(1), 1992
PMID: 1601093
Cruse H, Warnecke H., Exp Brain Res 89(1), 1992
PMID: 1601093
AUTHOR UNKNOWN, J COMP PHYSIOL 154(), 1984
AUTHOR UNKNOWN, Biol Cybern 61(), 1989
Cruse, J. Exp. Biol. 181(1), 1993
A modular artificial neural net for controlling a six-legged walking system.
Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M., Biol Cybern 72(5), 1995
PMID: 7734551
Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M., Biol Cybern 72(5), 1995
PMID: 7734551
AUTHOR UNKNOWN, ADAPT BEHAV 3(), 1995
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 155(), 1984
AUTHOR UNKNOWN, Biol Cybern 63(), 1990
AUTHOR UNKNOWN, Physiol. Entomol. 17(), 1992
DEAN, J. Exp. Biol. 103(1), 1983
Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
Degtyarenko AM, Simon ES, Norden-Krichmar T, Burke RE., J. Neurophysiol. 79(1), 1998
PMID: 9425213
Degtyarenko AM, Simon ES, Norden-Krichmar T, Burke RE., J. Neurophysiol. 79(1), 1998
PMID: 9425213
Motor activity during searching and walking movements of cockroach legs.
Delcomyn F., J. Exp. Biol. 133(), 1987
PMID: 3430111
Delcomyn F., J. Exp. Biol. 133(), 1987
PMID: 3430111
Stick insects walking along inclined surfaces.
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706
Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
Donelan JM, Pearson KG., J. Neurophysiol. 92(4), 2004
PMID: 15381742
Donelan JM, Pearson KG., J. Neurophysiol. 92(4), 2004
PMID: 15381742
Durr, J. Exp. Biol. 204(9), 2001
Context-dependent changes in strength and efficacy of leg coordination mechanisms.
Durr V., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939768
Durr V., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939768
The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning.
Durr V, Ebeling W., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939767
Durr V, Ebeling W., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939767
Graded limb targeting in an insect is caused by the shift of a single movement pattern.
Durr V, Matheson T., J. Neurophysiol. 90(3), 2003
PMID: 12773499
Durr V, Matheson T., J. Neurophysiol. 90(3), 2003
PMID: 12773499
The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking.
Durr V, Konig Y, Kittmann R., J. Comp. Physiol. A 187(2), 2001
PMID: 15524001
Durr V, Konig Y, Kittmann R., J. Comp. Physiol. A 187(2), 2001
PMID: 15524001
AUTHOR UNKNOWN, INT J ROBOT RES 22(), 2003
Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes.
Ebeling W, Durr V., J. Exp. Biol. 209(Pt 11), 2006
PMID: 16709921
Ebeling W, Durr V., J. Exp. Biol. 209(Pt 11), 2006
PMID: 16709921
AUTHOR UNKNOWN, PHIL TRANS R SOC B 354(), 1999
Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
Ekeberg O, Pearson K., J. Neurophysiol. 94(6), 2005
PMID: 16049149
Ekeberg O, Pearson K., J. Neurophysiol. 94(6), 2005
PMID: 16049149
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726
AUTHOR UNKNOWN, ADAPT BEHAV 1(), 1993
AUTHOR UNKNOWN, ROBOT AUTON SYST 18(), 1996
Mechanics of a rapid running insect: two-, four- and six-legged locomotion.
Full RJ, Tu MS., J. Exp. Biol. 156(), 1991
PMID: 2051129
Full RJ, Tu MS., J. Exp. Biol. 156(), 1991
PMID: 2051129
Leg design in hexapedal runners.
Full RJ, Blickhan R, Ting LH., J. Exp. Biol. 158(), 1991
PMID: 1919412
Full RJ, Blickhan R, Ting LH., J. Exp. Biol. 158(), 1991
PMID: 1919412
Quantifying dynamic stability and maneuverability in legged locomotion.
Full RJ, Kubow T, Schmitt J, Holmes P, Koditschek D., Integr. Comp. Biol. 42(1), 2002
PMID: 21708704
Full RJ, Kubow T, Schmitt J, Holmes P, Koditschek D., Integr. Comp. Biol. 42(1), 2002
PMID: 21708704
AUTHOR UNKNOWN, J DYNAMIC SYST MEAS CONTROL 113(), 1991
Positive force feedback in bouncing gaits?
Geyer H, Seyfarth A, Blickhan R., Proc. Biol. Sci. 270(1529), 2003
PMID: 14561282
Geyer H, Seyfarth A, Blickhan R., Proc. Biol. Sci. 270(1529), 2003
PMID: 14561282
AUTHOR UNKNOWN, Naturwissenschaften 73(), 1986
AUTHOR UNKNOWN, INT J ROBOT RES 9(), 1990
GRAHAM, J. Exp. Biol. 73(1), 1978
AUTHOR UNKNOWN, Biol Cybern 32(), 1979
AUTHOR UNKNOWN, ADV INSECT PHYSIOL 18(), 1985
Neural networks that co-ordinate locomotion and body orientation in lamprey.
Grillner S, Deliagina T, Ekeberg O , el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallen P., Trends Neurosci. 18(6), 1995
PMID: 7571002
Grillner S, Deliagina T, Ekeberg O , el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallen P., Trends Neurosci. 18(6), 1995
PMID: 7571002
Complex auditory behaviour emerges from simple reactive steering.
Hedwig B, Poulet JF., Nature 430(7001), 2004
PMID: 15306810
Hedwig B, Poulet JF., Nature 430(7001), 2004
PMID: 15306810
Multisensory control in insect oculomotor systems.
Hengstenberg R., Rev Oculomot Res 5(), 1993
PMID: 8420553
Hengstenberg R., Rev Oculomot Res 5(), 1993
PMID: 8420553
AUTHOR UNKNOWN, Ergeb Physiol 42(), 1939
AUTHOR UNKNOWN, Pflugers Arch. 246(), 1943
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 142(), 1981
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 150(), 1983
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 181(), 1997
Many-legged maneuverability: dynamics of turning in hexapods
Jindrich DL, Full RJ., J. Exp. Biol. 202 (Pt 12)(), 1999
PMID: 10333507
Jindrich DL, Full RJ., J. Exp. Biol. 202 (Pt 12)(), 1999
PMID: 10333507
Jindrich, J. Exp. Biol. 205(18), 2002
The cerebellum and VOR/OKR learning models.
Kawato M, Gomi H., Trends Neurosci. 15(11), 1992
PMID: 1281352
Kawato M, Gomi H., Trends Neurosci. 15(11), 1992
PMID: 1281352
AUTHOR UNKNOWN, ADAPT BEHAV 9(), 2002
AUTHOR UNKNOWN, IEEE TRANS ROBOT AUTOMAT 6(), 1990
AUTHOR UNKNOWN, PROC SEVENTH INT CONF ON SIMULATION OF ADAPTIVE BEHAVIOR FROM ANIMALS TO ANIMATS 7(), 2002
AUTHOR UNKNOWN, ADAPT BEHAV 13(), 2005
Central pattern generators and the control of rhythmic movements.
Marder E, Bucher D., Curr. Biol. 11(23), 2001
PMID: 11728329
Marder E, Bucher D., Curr. Biol. 11(23), 2001
PMID: 11728329
Matheson, J. Exp. Biol. 200(1), 1997
Load compensation in targeted limb movements of an insect.
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699
AUTHOR UNKNOWN, ADAPT BEHAV 1(), 1992
Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered.
Noah JA, Quimby L, Frazier SF, Zill SN., J. Comp. Physiol. A 187(10), 2001
PMID: 11800034
Noah JA, Quimby L, Frazier SF, Zill SN., J. Comp. Physiol. A 187(10), 2001
PMID: 11800034
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 187(10), 2001
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 187(), 2000
Common principles of motor control in vertebrates and invertebrates.
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894
Common principles of motor control in vertebrates and invertebrates.
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894
Pearson KG., Annu. Rev. Neurosci. 16(), 1993
PMID: 8460894
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 160(), 1987
AUTHOR UNKNOWN, Physiol. Entomol. 19(), 1994
AUTHOR UNKNOWN, ROBOT AUTONOM SYST 14(), 1995
Goal-driven behavioral adaptations in gap-climbing Drosophila.
Pick S, Strauss R., Curr. Biol. 15(16), 2005
PMID: 16111941
Pick S, Strauss R., Curr. Biol. 15(16), 2005
PMID: 16111941
Implications of positive feedback in the control of movement.
Prochazka A, Gillard D, Bennett DJ., J. Neurophysiol. 77(6), 1997
PMID: 9212271
Prochazka A, Gillard D, Bennett DJ., J. Neurophysiol. 77(6), 1997
PMID: 9212271
Positive force feedback control of muscles.
Prochazka A, Gillard D, Bennett DJ., J. Neurophysiol. 77(6), 1997
PMID: 9212270
Prochazka A, Gillard D, Bennett DJ., J. Neurophysiol. 77(6), 1997
PMID: 9212270
Comparing different controllers for the coordination of a six-legged walker.
Roggendorf T., Biol Cybern 92(4), 2005
PMID: 15806391
Roggendorf T., Biol Cybern 92(4), 2005
PMID: 15806391
Schmitz, J. Exp. Biol. 183(1), 1993
SCHMITZ, J. Exp. Biol. 143(1), 1989
AUTHOR UNKNOWN, VERH DT ZOOL GES 88(), 1995
A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties.
Schmitz J, Dean J, Kindermann T, Schumm M, Cruse H., Biol. Bull. 200(2), 2001
PMID: 11341583
Schmitz J, Dean J, Kindermann T, Schumm M, Cruse H., Biol. Bull. 200(2), 2001
PMID: 11341583
AUTHOR UNKNOWN, IEEE TRANS SYST MAN CYBERN PART B CYBERN 35(), 2005
AUTHOR UNKNOWN, INT J ROBOT RES 25(), 2006
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135
Receptive fields of motor neurons underlying local tactile reflexes in the locust.
Siegler MV, Burrows M., J. Neurosci. 6(2), 1986
PMID: 3950708
Siegler MV, Burrows M., J. Neurosci. 6(2), 1986
PMID: 3950708
AUTHOR UNKNOWN, ADV INSECT PHYSIOL 32(), 2005
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 174(), 1994
Dynamic and static stability in hexapedal runners.
Ting LH, Blickhan R, Full RJ., J. Exp. Biol. 197(), 1994
PMID: 7852905
Ting LH, Blickhan R, Full RJ., J. Exp. Biol. 197(), 1994
PMID: 7852905
Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromyograms.
Tryba AK, Ritzmann RE., J. Neurophysiol. 83(6), 2000
PMID: 10848552
Tryba AK, Ritzmann RE., J. Neurophysiol. 83(6), 2000
PMID: 10848552
Watson, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 182(1), 1998
AUTHOR UNKNOWN, Z VERGL PHYSIOL 48(), 1964
AUTHOR UNKNOWN, J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 160(), 1987
AUTHOR UNKNOWN, Nat. Neurosci. 3(), 2000
AUTHOR UNKNOWN, Biol Cybern 90(), 2004
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
Zill S, Schmitz J, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653725
STEPPING PATTERNS IN ANTS - INFLUENCE OF SPEED AND CURVATURE
Zollikofer C., J. Exp. Biol. 192(1), 1994
PMID: 9317406
Zollikofer C., J. Exp. Biol. 192(1), 1994
PMID: 9317406
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 17148058
PubMed | Europe PMC
Suchen in