Computing linkage disequilibrium aware genome embeddings using autoencoders
Tas G, Westerdijk T, Postma E, Veldink JH, Schönhuth A, Balvert M (2024)
Bioinformatics: btae326.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tas, Gizem;
Westerdijk, Timo;
Postma, Eric;
Veldink, Jan H;
Schönhuth, AlexanderUniBi ;
Balvert, Marleen
Einrichtung
Abstract / Bemerkung
MOTIVATION: The completion of the genome has paved the way for genome-wide association studies (GWAS), which explained certain proportions of heritability. GWAS are not optimally suited to detect non-linear effects in disease risk, possibly hidden in non-additive interactions (epistasis). Alternative methods for epistasis detection using e.g. deep neural networks (DNNs) are currently under active development. However, DNNs are constrained by finite computational resources, which can be rapidly depleted due to increasing complexity with the sheer size of the genome. Besides, the curse of dimensionality complicates the task of capturing meaningful genetic patterns for DNNs; therefore necessitates dimensionality reduction.; RESULTS: We propose a method to compress single nucleotide polymorphism (SNP) data, while leveraging the linkage disequilibrium (LD) structure and preserving potential epistasis. This method involves clustering correlated SNPs into haplotype blocks and training per-block autoencoders to learn a compressed representation of the block's genetic content. We provide an adjustable autoencoder design to accommodate diverse blocks and bypass extensive hyperparameter tuning. We applied this method to genotyping data from Project MinE, and achieved 99% average test reconstruction accuracy-i.e. minimal information loss-while compressing the input to nearly 10% of the original size. We demonstrate that haplotype-block based autoencoders outperform linear Principal Component Analysis (PCA) by approximately 3% chromosome-wide accuracy of reconstructed variants. To the extent of our knowledge, our approach is the first to simultaneously leverage haplotype structure and DNNs for dimensionality reduction of genetic data.; AVAILABILITY AND IMPLEMENTATION: Data are available for academic use through Project MinE at https://www.projectmine.com/research/data-sharing/, contingent upon terms and requirements specified by the source studies. Code is available at https://github.com/gizem-tas/haploblock-autoencoders.; SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. © The Author(s) 2024. Published by Oxford University Press.
Erscheinungsjahr
2024
Zeitschriftentitel
Bioinformatics
Art.-Nr.
btae326
eISSN
1367-4811
Page URI
https://pub.uni-bielefeld.de/record/2990178
Zitieren
Tas G, Westerdijk T, Postma E, Veldink JH, Schönhuth A, Balvert M. Computing linkage disequilibrium aware genome embeddings using autoencoders. Bioinformatics. 2024: btae326.
Tas, G., Westerdijk, T., Postma, E., Veldink, J. H., Schönhuth, A., & Balvert, M. (2024). Computing linkage disequilibrium aware genome embeddings using autoencoders. Bioinformatics, btae326. https://doi.org/10.1093/bioinformatics/btae326
Tas, Gizem, Westerdijk, Timo, Postma, Eric, Veldink, Jan H, Schönhuth, Alexander, and Balvert, Marleen. 2024. “Computing linkage disequilibrium aware genome embeddings using autoencoders”. Bioinformatics: btae326.
Tas, G., Westerdijk, T., Postma, E., Veldink, J. H., Schönhuth, A., and Balvert, M. (2024). Computing linkage disequilibrium aware genome embeddings using autoencoders. Bioinformatics:btae326.
Tas, G., et al., 2024. Computing linkage disequilibrium aware genome embeddings using autoencoders. Bioinformatics, : btae326.
G. Tas, et al., “Computing linkage disequilibrium aware genome embeddings using autoencoders”, Bioinformatics, 2024, : btae326.
Tas, G., Westerdijk, T., Postma, E., Veldink, J.H., Schönhuth, A., Balvert, M.: Computing linkage disequilibrium aware genome embeddings using autoencoders. Bioinformatics. : btae326 (2024).
Tas, Gizem, Westerdijk, Timo, Postma, Eric, Veldink, Jan H, Schönhuth, Alexander, and Balvert, Marleen. “Computing linkage disequilibrium aware genome embeddings using autoencoders”. Bioinformatics (2024): btae326.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 38775680
PubMed | Europe PMC
Suchen in