Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim
Ullah S, Koravuna S, Rückert U, Jungeblut T (2023)
International Journal of Neural Systems 33(09): 2350044.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Einrichtung
Abstract / Bemerkung
Spiking Neural Networks (SNNs) help achieve brain-like efficiency and functionality by building neurons and synapses that mimic the human brain’s transmission of electrical signals. However, optimal SNN implementation requires a precise balance of parametric values. To design such ubiquitous neural networks, a graphical tool for visualizing, analyzing, and explaining the internal behavior of spikes is crucial. Although some popular SNN simulators are available, these tools do not allow users to interact with the neural network during simulation. To this end, we have introduced the first runtime interactive simulator, called Runtime Analyzing and Visualization Simulator (RAVSim),adeveloped to analyze and dynamically visualize the behavior of SNNs, allowing end-users to interact, observe output concentration reactions, and make changes directly during the simulation. In this paper, we present RAVSim with the current implementation of runtime interaction using the LIF neural model with different connectivity schemes, an image classification model using SNNs, and a dataset creation feature. Our main objective is to primarily investigate binary classification using SNNs with RGB images. We created a feed-forward network using the LIF neural model for an image classification algorithm and evaluated it by using RAVSim. The algorithm classifies faces with and without masks, achieving an accuracy of 91.8% using 1000 neurons in a hidden layer, 0.0758 MSE, and an execution time of ∼10[Formula: see text]min on the CPU. The experimental results show that using RAVSim not only increases network design speed but also accelerates user learning capability.
Erscheinungsjahr
2023
Zeitschriftentitel
International Journal of Neural Systems
Band
33
Ausgabe
09
Art.-Nr.
2350044
ISSN
0129-0657
eISSN
1793-6462
Page URI
https://pub.uni-bielefeld.de/record/2982808
Zitieren
Ullah S, Koravuna S, Rückert U, Jungeblut T. Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim. International Journal of Neural Systems. 2023;33(09): 2350044.
Ullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2023). Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim. International Journal of Neural Systems, 33(09), 2350044. https://doi.org/10.1142/S0129065723500442
Ullah, Sana, Koravuna, Shamini, Rückert, Ulrich, and Jungeblut, Thorsten. 2023. “Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim”. International Journal of Neural Systems 33 (09): 2350044.
Ullah, S., Koravuna, S., Rückert, U., and Jungeblut, T. (2023). Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim. International Journal of Neural Systems 33:2350044.
Ullah, S., et al., 2023. Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim. International Journal of Neural Systems, 33(09): 2350044.
S. Ullah, et al., “Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim”, International Journal of Neural Systems, vol. 33, 2023, : 2350044.
Ullah, S., Koravuna, S., Rückert, U., Jungeblut, T.: Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim. International Journal of Neural Systems. 33, : 2350044 (2023).
Ullah, Sana, Koravuna, Shamini, Rückert, Ulrich, and Jungeblut, Thorsten. “Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim”. International Journal of Neural Systems 33.09 (2023): 2350044.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 37604777
PubMed | Europe PMC
Suchen in