SNNs Model Analyzing and Visualizing Experimentation Using RAVSim
Ullah S, Koravuna S, Rückert U, Jungeblut T (2022)
In: Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings. Iliadis L, Jayne C, Tefas A, Pimenidis E (Eds); Communications in Computer and Information Science. Cham: Springer International Publishing: 40-51.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Iliadis, Lazaros;
Jayne, Chrisina;
Tefas, Anastasios;
Pimenidis, Elias
Einrichtung
Abstract / Bemerkung
Spiking Neural Networks (SNNs) reduce the computational complexity compared to traditional artificial neural networks (ANN) by introducing the spike coding method and the nonlinear activated neuron model and transmitting only the binary spike events. However, these complex model simulations and behavioral analysis are a standard approach of parametric values verification prior to their physical implementation on the hardware. Recently some popular tools have been presented, but we believe that none of the tools allow users to interact with the model simulation in run-time. The run-time interaction with the simulation creates a full understanding of these complex SNNs model mechanisms which is a quite challenging process, especially for early-stage researchers and students. In this paper, we present the first version of our novel spiking neural network user-friendly software tool named RAVSim (Real-time Analysis and Visualization Simulator), which provides a runtime environment to analyze and simulate the SNNs model. It is an interactive and intuitive tool designed to help in knowing considerable parameters involved in the working of the neurons, their dependency on each other, determining the essential parametric values, and the communication between the neurons for replicating the way the human brain works. Moreover, the proposed SNNs model analysis and simulation algorithm used in RAVSim takes significantly less time in order to estimate and visualize the behavior of the parametric values during a runtime environment.
Erscheinungsjahr
2022
Titel des Konferenzbandes
Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings
Serien- oder Zeitschriftentitel
Communications in Computer and Information Science
Seite(n)
40-51
Konferenz
23rd International Conference on Engineering Applications of Neural Networks (EAAAI/EANN 2022)
Konferenzort
Chersonissos, Crete, Greece
Konferenzdatum
2022-06-17 – 2022-06-20
ISBN
978-3-031-08222-1
eISBN
978-3-031-08223-8
Page URI
https://pub.uni-bielefeld.de/record/2979461
Zitieren
Ullah S, Koravuna S, Rückert U, Jungeblut T. SNNs Model Analyzing and Visualizing Experimentation Using RAVSim. In: Iliadis L, Jayne C, Tefas A, Pimenidis E, eds. Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings. Communications in Computer and Information Science. Cham: Springer International Publishing; 2022: 40-51.
Ullah, S., Koravuna, S., Rückert, U., & Jungeblut, T. (2022). SNNs Model Analyzing and Visualizing Experimentation Using RAVSim. In L. Iliadis, C. Jayne, A. Tefas, & E. Pimenidis (Eds.), Communications in Computer and Information Science. Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings (pp. 40-51). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-08223-8_4
Ullah, Sana, Koravuna, Shamini, Rückert, Ulrich, and Jungeblut, Thorsten. 2022. “SNNs Model Analyzing and Visualizing Experimentation Using RAVSim”. In Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings, ed. Lazaros Iliadis, Chrisina Jayne, Anastasios Tefas, and Elias Pimenidis, 40-51. Communications in Computer and Information Science. Cham: Springer International Publishing.
Ullah, S., Koravuna, S., Rückert, U., and Jungeblut, T. (2022). “SNNs Model Analyzing and Visualizing Experimentation Using RAVSim” in Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings, Iliadis, L., Jayne, C., Tefas, A., and Pimenidis, E. eds. Communications in Computer and Information Science (Cham: Springer International Publishing), 40-51.
Ullah, S., et al., 2022. SNNs Model Analyzing and Visualizing Experimentation Using RAVSim. In L. Iliadis, et al., eds. Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings. Communications in Computer and Information Science. Cham: Springer International Publishing, pp. 40-51.
S. Ullah, et al., “SNNs Model Analyzing and Visualizing Experimentation Using RAVSim”, Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings, L. Iliadis, et al., eds., Communications in Computer and Information Science, Cham: Springer International Publishing, 2022, pp.40-51.
Ullah, S., Koravuna, S., Rückert, U., Jungeblut, T.: SNNs Model Analyzing and Visualizing Experimentation Using RAVSim. In: Iliadis, L., Jayne, C., Tefas, A., and Pimenidis, E. (eds.) Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings. Communications in Computer and Information Science. p. 40-51. Springer International Publishing, Cham (2022).
Ullah, Sana, Koravuna, Shamini, Rückert, Ulrich, and Jungeblut, Thorsten. “SNNs Model Analyzing and Visualizing Experimentation Using RAVSim”. Engineering Applications of Neural Networks. 23rd International Conference, EAAAI/EANN 2022, Chersonissos, Crete, Greece, June 17–20, 2022, Proceedings. Ed. Lazaros Iliadis, Chrisina Jayne, Anastasios Tefas, and Elias Pimenidis. Cham: Springer International Publishing, 2022. Communications in Computer and Information Science. 40-51.
Link(s) zu Volltext(en)
Access Level
Closed Access