Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects
Kuzu T (2022)
In: Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3. Fernández C, Llinares S, Gutiérrez Á, Planas N (Eds); Alicante: PME: 99-106.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Autor*in
Herausgeber*in
Fernández, Ceneida;
Llinares, Salvador;
Gutiérrez, Ángel;
Planas, Núria
Einrichtung
Abstract / Bemerkung
For conceptually understanding the ,Auxiliary Task’, learners have to understand the compensation process. Yet, since the strategy is highly complex compared to other mental calculation strategies, an important question is how the conceptual understanding of the strategy can be fostered and for this purpose, ordinal as well as cardinal learning environments were developed and evaluated in a design-based-study (which is part of the mixed-methods MaG-Project). Prior analyzes showed that especially the cardinal learning environment leads to more thorough conceptual discourses. In this paper, qualitative insights into the use of specific forms of cardinal representation – discrete versus continuous – and its interpretations by four 11-year-old German primary school learners’ will be given.
Stichworte
Pre-Algebraic Thinking;
Auxiliary Task;
Compensation Strategy;
Language in Mathematics Education;
Design-based Research
Erscheinungsjahr
2022
Titel des Konferenzbandes
Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3
Seite(n)
99-106
Urheberrecht / Lizenzen
Konferenz
PME Konferenz
Konferenzort
Alicante
Konferenzdatum
18.07.2022 – 23.07.2022
ISBN
978-84-1302-177-5
Page URI
https://pub.uni-bielefeld.de/record/2967193
Zitieren
Kuzu T. Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects. In: Fernández C, Llinares S, Gutiérrez Á, Planas N, eds. Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3. Alicante: PME; 2022: 99-106.
Kuzu, T. (2022). Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects. In C. Fernández, S. Llinares, Á. Gutiérrez, & N. Planas (Eds.), Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3 (pp. 99-106). Alicante: PME.
Kuzu, Taha. 2022. “Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects”. In Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3, ed. Ceneida Fernández, Salvador Llinares, Ángel Gutiérrez, and Núria Planas, 99-106. Alicante: PME.
Kuzu, T. (2022). “Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects” in Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3, Fernández, C., Llinares, S., Gutiérrez, Á., and Planas, N. eds. (Alicante: PME), 99-106.
Kuzu, T., 2022. Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects. In C. Fernández, et al., eds. Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3. Alicante: PME, pp. 99-106.
T. Kuzu, “Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects”, Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3, C. Fernández, et al., eds., Alicante: PME, 2022, pp.99-106.
Kuzu, T.: Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects. In: Fernández, C., Llinares, S., Gutiérrez, Á., and Planas, N. (eds.) Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3. p. 99-106. PME, Alicante (2022).
Kuzu, Taha. “Understanding the 'Auxiliary Task' conceptually - Discrete versus continuous cardinal objects”. Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education. Volume 3. Ed. Ceneida Fernández, Salvador Llinares, Ángel Gutiérrez, and Núria Planas. Alicante: PME, 2022. 99-106.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Public Domain Dedication (CC0 1.0):
Volltext(e)
Name
Access Level

Zuletzt Hochgeladen
2022-11-23T13:49:16Z
MD5 Prüfsumme
2e8d77124b75570abdc4d301faf0e12b
Link(s) zu Volltext(en)
Access Level
