VeChat: correcting errors in long reads using variation graphs

Luo X, Kang X, Schönhuth A (2022)
Nature Communications 13(1): 6657.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 860.95 KB
Abstract / Bemerkung
Error correction is the canonical first step in long-read sequencing data analysis. Current self-correction methods, however, are affected by consensus sequence induced biases that mask true variants in haplotypes of lower frequency showing in mixed samples. Unlike consensus sequence templates, graph-based reference systems are not affected by such biases, so do not mistakenly mask true variants as errors. We present VeChat, as an approach to implement this idea: VeChat is based on variation graphs, as a popular type of data structure for pangenome reference systems. Extensive benchmarking experiments demonstrate that long reads corrected by VeChat contain 4 to 15 (Pacific Biosciences) and 1 to 10 times (Oxford Nanopore Technologies) less errors than when being corrected by state of the art approaches. Further, using VeChat prior to long-read assembly significantly improves the haplotype awareness of the assemblies. VeChat is an easy-to-use open-source tool and publicly available at https://github.com/HaploKit/vechat . © 2022. The Author(s).
Erscheinungsjahr
2022
Zeitschriftentitel
Nature Communications
Band
13
Ausgabe
1
Art.-Nr.
6657
eISSN
2041-1723
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2966833

Zitieren

Luo X, Kang X, Schönhuth A. VeChat: correcting errors in long reads using variation graphs. Nature Communications. 2022;13(1): 6657.
Luo, X., Kang, X., & Schönhuth, A. (2022). VeChat: correcting errors in long reads using variation graphs. Nature Communications, 13(1), 6657. https://doi.org/10.1038/s41467-022-34381-8
Luo, Xiao, Kang, Xiongbin, and Schönhuth, Alexander. 2022. “VeChat: correcting errors in long reads using variation graphs”. Nature Communications 13 (1): 6657.
Luo, X., Kang, X., and Schönhuth, A. (2022). VeChat: correcting errors in long reads using variation graphs. Nature Communications 13:6657.
Luo, X., Kang, X., & Schönhuth, A., 2022. VeChat: correcting errors in long reads using variation graphs. Nature Communications, 13(1): 6657.
X. Luo, X. Kang, and A. Schönhuth, “VeChat: correcting errors in long reads using variation graphs”, Nature Communications, vol. 13, 2022, : 6657.
Luo, X., Kang, X., Schönhuth, A.: VeChat: correcting errors in long reads using variation graphs. Nature Communications. 13, : 6657 (2022).
Luo, Xiao, Kang, Xiongbin, and Schönhuth, Alexander. “VeChat: correcting errors in long reads using variation graphs”. Nature Communications 13.1 (2022): 6657.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-03-23T09:38:00Z
MD5 Prüfsumme
bee1ba546906ce0367b0327cd001d530


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 36333324
PubMed | Europe PMC

Suchen in

Google Scholar