A targeted transcriptomics approach for the determination of mixture effects of pesticides

Lichtenstein D, Mentz A, Sprenger H, Schmidt FF, Albaum S, Kalinowski J, Planatscher H, Joos TO, Poetz O, Braeuning A (2021)
Toxicology 460: 152892.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lichtenstein, Dajana; Mentz, AlmutUniBi; Sprenger, Heike; Schmidt, Felix F.; Albaum, StefanUniBi ; Kalinowski, JörnUniBi; Planatscher, Hannes; Joos, Thomas O.; Poetz, Oliver; Braeuning, Albert
Abstract / Bemerkung
While real-life exposure occurs to complex chemical mixtures, toxicological risk assessment mostly focuses on individual compounds. There is an increasing demand for in vitro tools and strategies for mixture toxicity analysis. Based on a previously established set of hepatotoxicity marker genes, we analyzed mixture effects of non-cytotoxic concentrations of different pesticides in exposure-relevant binary mixtures in human HepaRG hepatocarcinoma cells using targeted transcriptomics. An approach for mixture analysis at the level of a complex endpoint such as a transcript pattern is presented, including mixture design based on relative transcriptomic potencies and similarities. From a mechanistic point of view, goal of the study was to evaluate combinations of chemicals with varying degrees of similarity in order to determine whether differences in mechanisms of action lead to different mixtures effects. Using a model deviation ratio-based approach for assessing mixture effects, it was revealed that most data points are consistent with the assumption of dose addition. A tendency for synergistic effects was only observed at high concentrations of some combinations of the test compounds azoxystrobin, cyproconazole, difenoconazole, propiconazole and thiacloprid, which may not be representative of human reallife exposure. In summary, the findings of our study suggest that, for the pesticide mixtures investigated, risk assessment based on the general assumption of dose addition can be considered sufficiently protective for consumers. The way of data analysis presented in this paper can pave the way for a more comprehensive use of multi-gene expression data in experimental studies related to mixture toxicity.
Stichworte
Liver toxicity; Pesticides; Transcript signature; Steatosis; Hepatocytes
Erscheinungsjahr
2021
Zeitschriftentitel
Toxicology
Band
460
Art.-Nr.
152892
ISSN
0300-483X
Page URI
https://pub.uni-bielefeld.de/record/2957358

Zitieren

Lichtenstein D, Mentz A, Sprenger H, et al. A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology. 2021;460: 152892.
Lichtenstein, D., Mentz, A., Sprenger, H., Schmidt, F. F., Albaum, S., Kalinowski, J., Planatscher, H., et al. (2021). A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology, 460, 152892. https://doi.org/10.1016/j.tox.2021.152892
Lichtenstein, D., Mentz, A., Sprenger, H., Schmidt, F. F., Albaum, S., Kalinowski, J., Planatscher, H., Joos, T. O., Poetz, O., and Braeuning, A. (2021). A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology 460:152892.
Lichtenstein, D., et al., 2021. A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology, 460: 152892.
D. Lichtenstein, et al., “A targeted transcriptomics approach for the determination of mixture effects of pesticides”, Toxicology, vol. 460, 2021, : 152892.
Lichtenstein, D., Mentz, A., Sprenger, H., Schmidt, F.F., Albaum, S., Kalinowski, J., Planatscher, H., Joos, T.O., Poetz, O., Braeuning, A.: A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology. 460, : 152892 (2021).
Lichtenstein, Dajana, Mentz, Almut, Sprenger, Heike, Schmidt, Felix F., Albaum, Stefan, Kalinowski, Jörn, Planatscher, Hannes, Joos, Thomas O., Poetz, Oliver, and Braeuning, Albert. “A targeted transcriptomics approach for the determination of mixture effects of pesticides”. Toxicology 460 (2021): 152892.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 34371104
PubMed | Europe PMC

Suchen in

Google Scholar