Iron Regulation in Clostridioides difficile

Berges M, Michel A-M, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, et al. (2018)
Frontiers in Microbiology 9: 3183.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Berges, Mareike; Michel, Annika-Marisa; Lassek, Christian; Nuss, Aaron M.; Beckstette, MichaelUniBi; Dersch, Petra; Riedel, Katharina; Sievers, Susanne; Becher, Dörte; Otto, Andreas; Maaß, Sandra; Rohde, Manfred
Alle
Abstract / Bemerkung
The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB) of the F0F1-type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase (atpDBAFCEKI) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. The fur mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis (spe) was induced leading to an accumulation of spermine, spermidine, and putrescine. The fur mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
Erscheinungsjahr
2018
Zeitschriftentitel
Frontiers in Microbiology
Band
9
Art.-Nr.
3183
eISSN
1664-302X
Page URI
https://pub.uni-bielefeld.de/record/2953288

Zitieren

Berges M, Michel A-M, Lassek C, et al. Iron Regulation in Clostridioides difficile. Frontiers in Microbiology. 2018;9: 3183.
Berges, M., Michel, A. - M., Lassek, C., Nuss, A. M., Beckstette, M., Dersch, P., Riedel, K., et al. (2018). Iron Regulation in Clostridioides difficile. Frontiers in Microbiology, 9, 3183. https://doi.org/10.3389/fmicb.2018.03183
Berges, Mareike, Michel, Annika-Marisa, Lassek, Christian, Nuss, Aaron M., Beckstette, Michael, Dersch, Petra, Riedel, Katharina, et al. 2018. “Iron Regulation in Clostridioides difficile”. Frontiers in Microbiology 9: 3183.
Berges, M., Michel, A. - M., Lassek, C., Nuss, A. M., Beckstette, M., Dersch, P., Riedel, K., Sievers, S., Becher, D., Otto, A., et al. (2018). Iron Regulation in Clostridioides difficile. Frontiers in Microbiology 9:3183.
Berges, M., et al., 2018. Iron Regulation in Clostridioides difficile. Frontiers in Microbiology, 9: 3183.
M. Berges, et al., “Iron Regulation in Clostridioides difficile”, Frontiers in Microbiology, vol. 9, 2018, : 3183.
Berges, M., Michel, A.-M., Lassek, C., Nuss, A.M., Beckstette, M., Dersch, P., Riedel, K., Sievers, S., Becher, D., Otto, A., Maaß, S., Rohde, M., Eckweiler, D., Borrero-de Acuña, J.M., Jahn, M., Neumann-Schaal, M., Jahn, D.: Iron Regulation in Clostridioides difficile. Frontiers in Microbiology. 9, : 3183 (2018).
Berges, Mareike, Michel, Annika-Marisa, Lassek, Christian, Nuss, Aaron M., Beckstette, Michael, Dersch, Petra, Riedel, Katharina, Sievers, Susanne, Becher, Dörte, Otto, Andreas, Maaß, Sandra, Rohde, Manfred, Eckweiler, Denitsa, Borrero-de Acuña, Jose M., Jahn, Martina, Neumann-Schaal, Meina, and Jahn, Dieter. “Iron Regulation in Clostridioides difficile”. Frontiers in Microbiology 9 (2018): 3183.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30619231
PubMed | Europe PMC

Suchen in

Google Scholar