Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells

Lichtenstein D, Mentz A, Schmidt FF, Luckert C, Buhrke T, Marx-Stoelting P, Kalinowski J, Albaum S, Joos TO, Poetz O, Braeuning A (2020)
Food and Chemical Toxicology 145: 111690.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lichtenstein, Dajana; Mentz, AlmutUniBi; Schmidt, Felix F.; Luckert, Claudia; Buhrke, Thorsten; Marx-Stoelting, Philip; Kalinowski, JörnUniBi; Albaum, StefanUniBi ; Joos, Thomas O.; Poetz, Oliver; Braeuning, Albert
Abstract / Bemerkung
Non-alcoholic fatty liver disease is a major health concern especially in Western countries. Animal studies suggest that certain chemicals may contribute to hepatocellular triglyceride accumulation, among them a number of hepatotoxic pesticidal active compounds. In order to improve the identification of potential liver steatosis inducers in vitro in a human cell culture system, HepaRG cells were treated with a selection of 30 steatotic or non-steatotic pesticides. Induction of triglyceride accumulation was monitored, and changes in the expression of hepatotoxicity marker genes were measured at the mRNA and protein levels. Based on these data, transcript and protein marker signatures predictive of triglyceride accumulation in HepaRG cells were derived. The predictive transcript set consisted of POR, ANXA10, ARG1, CCL20, FASN, INSIG1, SREBF1, CD36, CYP2D6, and SLCO1B1. The predictive protein set consisted of NCPR (POR), CYP2E1, CYP1A1, ALDH3A1, UGT2B7, UGT2B15, S100P, LMNA, and PRKDC. In conclusion, the present study presents for the first time transcript and protein marker patterns to separate steatotic from non-steatotic compounds in a human liver cell line.
Stichworte
Hepatocytes; Pesticide; Adverse outcome pathway; Non-alcoholic fatty; liver disease; Liver toxicity
Erscheinungsjahr
2020
Zeitschriftentitel
Food and Chemical Toxicology
Band
145
Art.-Nr.
111690
ISSN
0278-6915
eISSN
1873-6351
Page URI
https://pub.uni-bielefeld.de/record/2950242

Zitieren

Lichtenstein D, Mentz A, Schmidt FF, et al. Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells. Food and Chemical Toxicology. 2020;145: 111690.
Lichtenstein, D., Mentz, A., Schmidt, F. F., Luckert, C., Buhrke, T., Marx-Stoelting, P., Kalinowski, J., et al. (2020). Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells. Food and Chemical Toxicology, 145, 111690. doi:10.1016/j.fct.2020.111690
Lichtenstein, D., Mentz, A., Schmidt, F. F., Luckert, C., Buhrke, T., Marx-Stoelting, P., Kalinowski, J., Albaum, S., Joos, T. O., Poetz, O., et al. (2020). Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells. Food and Chemical Toxicology 145:111690.
Lichtenstein, D., et al., 2020. Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells. Food and Chemical Toxicology, 145: 111690.
D. Lichtenstein, et al., “Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells”, Food and Chemical Toxicology, vol. 145, 2020, : 111690.
Lichtenstein, D., Mentz, A., Schmidt, F.F., Luckert, C., Buhrke, T., Marx-Stoelting, P., Kalinowski, J., Albaum, S., Joos, T.O., Poetz, O., Braeuning, A.: Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells. Food and Chemical Toxicology. 145, : 111690 (2020).
Lichtenstein, Dajana, Mentz, Almut, Schmidt, Felix F., Luckert, Claudia, Buhrke, Thorsten, Marx-Stoelting, Philip, Kalinowski, Jörn, Albaum, Stefan, Joos, Thomas O., Poetz, Oliver, and Braeuning, Albert. “Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells”. Food and Chemical Toxicology 145 (2020): 111690.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 32810590
PubMed | Europe PMC

Suchen in

Google Scholar