Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110

Schaffert L, März C, Burkhardt L, Droste J, Brandt D, Busche T, Rosen W, Schneiker-Bekel S, Persicke M, Pühler A, Kalinowski J (2019)
Microbial Cell Factories 18(1): 114.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 3.36 MB
OA 2019 Schaffert Additional files.docx 1.44 MB
OA 2019 Schaffert.pdf 3.36 MB
Abstract / Bemerkung
Background Actinoplanes sp. SE50/110 is a natural producer of acarbose. It has been extensively studied in the last decades, which has led to the comprehensive analysis of the whole genome, transcriptome and proteome. First genetic and microbial techniques have been successfully established allowing targeted genome editing by CRISPR/Cas9 and conjugal transfer. Still, a suitable system for the overexpression of singular genes does not exist for Actinoplanes sp. SE50/110. Here, we discuss, test and analyze different strategies by the example of the acarbose biosynthesis gene acbC. Results The integrative φC31-based vector pSET152 was chosen for the development of an expression system, as for the replicative pSG5-based vector pKC1139 unwanted vector integration by homologous recombination was observed. Since simple gene duplication by pSET152 integration under control of native promoters appeared to be insufficient for overexpression, a promoter screening experiment was carried out. We analyzed promoter strengths of five native and seven heterologous promoters using transcriptional fusion with the gusA gene and glucuronidase assays as well as reverse transcription quantitative PCR (RT-qPCR). Additionally, we mapped transcription starts and identified the promoter sequence motifs by 5′-RNAseq experiments. Promoters with medium to strong expression were included into the pSET152-system, leading to an overexpression of the acbC gene. AcbC catalyzes the first step of acarbose biosynthesis and connects primary to secondary metabolism. By overexpression, the acarbose formation was not enhanced, but slightly reduced in case of strongest overexpression. We assume either disturbance of substrate channeling or a negative feed-back inhibition by one of the intermediates, which accumulates in the acbC-overexpression mutant. According to LC–MS-analysis, we conclude, that this intermediate is valienol-7P. This points to a bottleneck in later steps of acarbose biosynthesis. Conclusion Development of an overexpression system for Actinoplanes sp. SE50/110 is an important step for future metabolic engineering. This system will help altering transcript amounts of singular genes, that can be used to unclench metabolic bottlenecks and to redirect metabolic resources. Furthermore, an essential tool is provided, that can be transferred to other subspecies of Actinoplanes and industrially relevant derivatives.
Stichworte
Actinoplanes; Acarbose; pKC1139; pSET152; Promoter screening; gusA; TSS detection
Erscheinungsjahr
2019
Zeitschriftentitel
Microbial Cell Factories
Band
18
Ausgabe
1
Art.-Nr.
114
ISSN
1475-2859
eISSN
1475-2859
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2936439

Zitieren

Schaffert L, März C, Burkhardt L, et al. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microbial Cell Factories. 2019;18(1): 114.
Schaffert, L., März, C., Burkhardt, L., Droste, J., Brandt, D., Busche, T., Rosen, W., et al. (2019). Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microbial Cell Factories, 18(1), 114. doi:10.1186/s12934-019-1162-5
Schaffert, Lena, März, Camilla, Burkhardt, Lisa, Droste, Julian, Brandt, David, Busche, Tobias, Rosen, Winfried, et al. 2019. “Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110”. Microbial Cell Factories 18 (1): 114.
Schaffert, L., März, C., Burkhardt, L., Droste, J., Brandt, D., Busche, T., Rosen, W., Schneiker-Bekel, S., Persicke, M., Pühler, A., et al. (2019). Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microbial Cell Factories 18:114.
Schaffert, L., et al., 2019. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microbial Cell Factories, 18(1): 114.
L. Schaffert, et al., “Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110”, Microbial Cell Factories, vol. 18, 2019, : 114.
Schaffert, L., März, C., Burkhardt, L., Droste, J., Brandt, D., Busche, T., Rosen, W., Schneiker-Bekel, S., Persicke, M., Pühler, A., Kalinowski, J.: Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microbial Cell Factories. 18, : 114 (2019).
Schaffert, Lena, März, Camilla, Burkhardt, Lisa, Droste, Julian, Brandt, David, Busche, Tobias, Rosen, Winfried, Schneiker-Bekel, Susanne, Persicke, Marcus, Pühler, Alfred, and Kalinowski, Jörn. “Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110”. Microbial Cell Factories 18.1 (2019): 114.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-07-12T09:24:18Z
MD5 Prüfsumme
3bb7edcccf8348fc1eb45fe1b53b16cb
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-10-29T05:46:43Z
MD5 Prüfsumme
7af2297a535cda729d0d73bb7af6e809
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-10-29T05:46:51Z
MD5 Prüfsumme
3bb7edcccf8348fc1eb45fe1b53b16cb


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

50 References

Daten bereitgestellt von Europe PubMed Central.

[New enzyme inhibitors from microorganisms (author's transl)]
Frommer W, Junge B, Muller L, Schmidt D, Truscheit E., Planta Med. 35(3), 1979
PMID: 432298
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545
Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway.
Zhang CS, Stratmann A, Block O, Bruckner R, Podeschwa M, Altenbach HJ, Wehmeier UF, Piepersberg W., J. Biol. Chem. 277(25), 2002
PMID: 11937512
The acarbose-biosynthetic enzyme AcbO from Actinoplanes sp. SE 50/110 is a 2-epi-5-epi-valiolone-7-phosphate 2-epimerase.
Zhang CS, Podeschwa M, Altenbach HJ, Piepersberg W, Wehmeier UF., FEBS Lett. 540(1-3), 2003
PMID: 12681481
The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism.
Wendler S, Hurtgen D, Kalinowski J, Klein A, Niehaus K, Schulte F, Schwientek P, Wehlmann H, Wehmeier UF, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 22944206
Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.
Schwientek P, Wendler S, Neshat A, Eirich C, Ruckert C, Klein A, Wehmeier UF, Kalinowski J, Stoye J, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 23142701
Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 131(), 2015
PMID: 26597626
Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Puhler A, Kalinowski J., J. Biotechnol. 251(), 2017
PMID: 28427920
Genetic engineering in Actinoplanes sp. SE50/110 - development of an intergeneric conjugation system for the introduction of actinophage-based integrative vectors.
Gren T, Ortseifen V, Wibberg D, Schneiker-Bekel S, Bednarz H, Niehaus K, Zemke T, Persicke M, Puhler A, Kalinowski J., J. Biotechnol. 232(), 2016
PMID: 27181842
Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
Wolf T, Gren T, Thieme E, Wibberg D, Zemke T, Puhler A, Kalinowski J., J. Biotechnol. 231(), 2016
PMID: 27262504
Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus--Producer of teicoplanin, drug of last defense.
Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V., J. Biotechnol. 168(4), 2013
PMID: 24161919
Members of the genus Actinoplanes and their antibiotics.
Parenti F, Coronelli C., Annu. Rev. Microbiol. 33(), 1979
PMID: 386928
Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.
Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE., Gene 116(1), 1992
PMID: 1628843
Manipulating the regulatory genes for teicoplanin production in Actinoplanes teichomyceticus.
Horbal L, Zaburannyy N, Ostash B, Shulga S, Fedorenko V., World J. Microbiol. Biotechnol. 28(5), 2012
PMID: 22806031
Identification of a gene cluster for antibacterial polyketide-derived antibiotic biosynthesis in the nystatin producer Streptomyces noursei ATCC 11455.
Zotchev S, Haugan K, Sekurova O, Sletta H, Ellingsen TE, Valla S., Microbiology (Reading, Engl.) 146 ( Pt 3)(), 2000
PMID: 10746764
A gene cloning system for the siomycin producer Streptomyces sioyaensis NRRL-B5408.
Myronovskyy M, Ostash B, Ostash I, Fedorenko V., Folia Microbiol. (Praha) 54(2), 2009
PMID: 19418244
Enzymology of aminoglycoside biosynthesis-deduction from gene clusters.
Wehmeier UF, Piepersberg W., Meth. Enzymol. 459(), 2009
PMID: 19362651
Protein database searches using compositionally adjusted substitution matrices.
Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK., FEBS J. 272(20), 2005
PMID: 16218944
The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110.
Wolf T, Droste J, Gren T, Ortseifen V, Schneiker-Bekel S, Zemke T, Puhler A, Kalinowski J., BMC Genomics 18(1), 2017
PMID: 28743243
Identification of pirin, a novel highly conserved nuclear protein.
Wendler WM, Kremmer E, Forster R, Winnacker EL., J. Biol. Chem. 272(13), 1997
PMID: 9079676
A cyanobacterial gene encoding an ortholog of Pirin is induced under stress conditions.
Hihara Y, Muramatsu M, Nakamura K, Sonoike K., FEBS Lett. 574(1-3), 2004
PMID: 15358547
Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity.
Soo PC, Horng YT, Lai MJ, Wei JR, Hsieh SC, Chang YL, Tsai YH, Lai HC., J. Bacteriol. 189(1), 2006
PMID: 16980458
Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation.
Voeykova T, Emelyanova L, Tabakov V, Mkrtumyan N., FEMS Microbiol. Lett. 162(1), 1998
PMID: 9595662
IncP plasmids are most effective in mediating conjugation between Escherichia coli and streptomycetes.
Luzhetskyy A, Fedoryshyn M, Gromyko O, Ostash B, Rebets Y, Bechthold A, Fedorenko V., Genetika 42(5), 2006
PMID: 16808239
Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression.
Chiu ML, Folcher M, Katoh T, Puglia AM, Vohradsky J, Yun BS, Seto H, Thompson CJ., J. Biol. Chem. 274(29), 1999
PMID: 10400688
Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes.
Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A., Appl. Environ. Microbiol. 77(15), 2011
PMID: 21685164
Complete characterization of the seventeen step moenomycin biosynthetic pathway.
Ostash B, Doud EH, Lin C, Ostash I, Perlstein DL, Fuse S, Wolpert M, Kahne D, Walker S., Biochemistry 48(37), 2009
PMID: 19640006
International noninterventional study of acarbose treatment in patients with type 2 diabetes mellitus.
Li C, Hung YJ, Qamruddin K, Aziz MF, Stein H, Schmidt B., Diabetes Res. Clin. Pract. 92(1), 2011
PMID: 21251726
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
AQUA Cloning: A Versatile and Simple Enzyme-Free Cloning Approach.
Beyer HM, Gonschorek P, Samodelov SL, Meier M, Weber W, Zurbriggen MD., PLoS ONE 10(9), 2015
PMID: 26360249
Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose.
Wehmeier UF, Piepersberg W., Appl. Microbiol. Biotechnol. 63(6), 2003
PMID: 14669056
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 125(), 2015
PMID: 25896738
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31253141
PubMed | Europe PMC

Suchen in

Google Scholar