Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase

Baulig A, Helmle I, Bader M, Wolf F, Kulik A, Al-Dilaimi A, Wibberg D, Kalinowski J, Gross H, Kaysser L (2019)
CHEMICAL SCIENCE 10(16): 4486-4490.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Baulig, Alexandra; Helmle, Irina; Bader, Marius; Wolf, Felix; Kulik, Andreas; Al-Dilaimi, ArwaUniBi; Wibberg, DanielUniBi; Kalinowski, JörnUniBi; Gross, Harald; Kaysser, Leonard
Abstract / Bemerkung
Phosphoramidon is a potent metalloprotease inhibitor and a widespread tool in cell biology research. It contains a dipeptide backbone that is uniquely linked to a 6-deoxysugar via a phosphoramidate bridge. Herein, we report the identification of a gene cluster for the formation of phosphoramidon and its detailed characterization. In vitro reconstitution of the biosynthesis established TalE as a phosphoramidate-forming kinase and TalC as the glycosyltransferase which installs the L-rhamnose moiety by phosphoester linkage.
Erscheinungsjahr
2019
Zeitschriftentitel
CHEMICAL SCIENCE
Band
10
Ausgabe
16
Seite(n)
4486-4490
ISSN
2041-6520
eISSN
2041-6539
Page URI
https://pub.uni-bielefeld.de/record/2935580

Zitieren

Baulig A, Helmle I, Bader M, et al. Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase. CHEMICAL SCIENCE. 2019;10(16):4486-4490.
Baulig, A., Helmle, I., Bader, M., Wolf, F., Kulik, A., Al-Dilaimi, A., Wibberg, D., et al. (2019). Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase. CHEMICAL SCIENCE, 10(16), 4486-4490. doi:10.1039/c9sc00641a
Baulig, A., Helmle, I., Bader, M., Wolf, F., Kulik, A., Al-Dilaimi, A., Wibberg, D., Kalinowski, J., Gross, H., and Kaysser, L. (2019). Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase. CHEMICAL SCIENCE 10, 4486-4490.
Baulig, A., et al., 2019. Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase. CHEMICAL SCIENCE, 10(16), p 4486-4490.
A. Baulig, et al., “Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase”, CHEMICAL SCIENCE, vol. 10, 2019, pp. 4486-4490.
Baulig, A., Helmle, I., Bader, M., Wolf, F., Kulik, A., Al-Dilaimi, A., Wibberg, D., Kalinowski, J., Gross, H., Kaysser, L.: Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase. CHEMICAL SCIENCE. 10, 4486-4490 (2019).
Baulig, Alexandra, Helmle, Irina, Bader, Marius, Wolf, Felix, Kulik, Andreas, Al-Dilaimi, Arwa, Wibberg, Daniel, Kalinowski, Jörn, Gross, Harald, and Kaysser, Leonard. “Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase”. CHEMICAL SCIENCE 10.16 (2019): 4486-4490.

35 References

Daten bereitgestellt von Europe PubMed Central.

Peptidomimetics, a synthetic tool of drug discovery.
Vagner J, Qu H, Hruby VJ., Curr Opin Chem Biol 12(3), 2008
PMID: 18423417
Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis.
Waldman AJ, Ng TL, Wang P, Balskus EP., Chem. Rev. 117(8), 2017
PMID: 28375000

AUTHOR UNKNOWN, 1972
Letter: A thermolysin inhibitor produced by Actinomycetes: phospholamidon.
Suda H, Aoyagi T, Takeuchi T, Umezawa H., J. Antibiot. 26(10), 1973
PMID: 4792110

AUTHOR UNKNOWN, 1980
Effect of an inhaled neutral endopeptidase inhibitor, phosphoramidon, on baseline airway calibre and bronchial responsiveness to bradykinin in asthma.
Crimi N, Polosa R, Pulvirenti G, Magri S, Santonocito G, Prosperini G, Mastruzzo C, Mistretta A., Thorax 50(5), 1995
PMID: 7597662
Inhibition of neutral endopeptidase (NEP) facilitates neurogenic inflammation.
Kramer HH, Schmidt K, Leis S, Schmelz M, Sommer C, Birklein F., Exp. Neurol. 195(1), 2005
PMID: 15963503
Cloning and mapping of the genetic determinants for microcin C7 production and immunity.
Novoa MA, Diaz-Guerra L, San Millan JL, Moreno F., J. Bacteriol. 168(3), 1986
PMID: 3536876
Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7.
Gonzalez-Pastor JE, San Millan JL, Castilla MA, Moreno F., J. Bacteriol. 177(24), 1995
PMID: 8522520
Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall.
Kim JG, Park BK, Kim SU, Choi D, Nahm BH, Moon JS, Reader JS, Farrand SK, Hwang I., Proc. Natl. Acad. Sci. U.S.A. 103(23), 2006
PMID: 16731618

AUTHOR UNKNOWN, 2014
Functional characterization of the gene cluster from Pseudomonas syringae pv. phaseolicola NPS3121 involved in synthesis of phaseolotoxin.
Aguilera S, Lopez-Lopez K, Nieto Y, Garciduenas-Pina R, Hernandez-Guzman G, Hernandez-Flores JL, Murillo J, Alvarez-Morales A., J. Bacteriol. 189(7), 2007
PMID: 17237165
Formation and attachment of the deoxysugar moiety and assembly of the gene cluster for caprazamycin biosynthesis.
Kaysser L, Wemakor E, Siebenberg S, Salas JA, Sohng JK, Kammerer B, Gust B., Appl. Environ. Microbiol. 76(12), 2010
PMID: 20418426
Biosynthesis of Oligopeptides Using ATP-Grasp Enzymes.
Ogasawara Y, Dairi T., Chemistry 23(45), 2017
PMID: 28488371

AUTHOR UNKNOWN, 2017

AUTHOR UNKNOWN, 2017
Warhead biosynthesis and the origin of structural diversity in hydroxamate metalloproteinase inhibitors.
Leipoldt F, Santos-Aberturas J, Stegmann DP, Wolf F, Kulik A, Lacret R, Popadic D, Keinhorster D, Kirchner N, Bekiesch P, Gross H, Truman AW, Kaysser L., Nat Commun 8(1), 2017
PMID: 29213087
The mechanism of the pyruvate, phosphate dikinase reaction.
Evans HJ, Wood HG., Proc. Natl. Acad. Sci. U.S.A. 61(4), 1968
PMID: 4303480
Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites.
Herzberg O, Chen CC, Kapadia G, McGuire M, Carroll LJ, Noh SJ, Dunaway-Mariano D., Proc. Natl. Acad. Sci. U.S.A. 93(7), 1996
PMID: 8610096
Sequence and structure classification of kinases.
Cheek S, Zhang H, Grishin NV., J. Mol. Biol. 320(4), 2002
PMID: 12095261
Discovery of a Glutamine Kinase Required for the Biosynthesis of the O-Methyl Phosphoramidate Modifications Found in the Capsular Polysaccharides of Campylobacter jejuni.
Taylor ZW, Brown HA, Narindoshvili T, Wenzel CQ, Szymanski CM, Holden HM, Raushel FM., J. Am. Chem. Soc. 139(28), 2017
PMID: 28650156
Substrate Specificity and Chemical Mechanism for the Reaction Catalyzed by Glutamine Kinase.
Taylor ZW, Chamberlain AR, Raushel FM., Biochemistry 57(37), 2018
PMID: 30142271
A comprehensive review of glycosylated bacterial natural products.
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS., Chem Soc Rev 44(21), 2015
PMID: 25735878
Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules.
Gantt RW, Peltier-Pain P, Thorson JS., Nat Prod Rep 28(11), 2011
PMID: 21901218

AUTHOR UNKNOWN, 2004
Sublancin is not a lantibiotic but an S-linked glycopeptide.
Oman TJ, Boettcher JM, Wang H, Okalibe XN, van der Donk WA., Nat. Chem. Biol. 7(2), 2011
PMID: 21196935
Complete characterization of the seventeen step moenomycin biosynthetic pathway.
Ostash B, Doud EH, Lin C, Ostash I, Perlstein DL, Fuse S, Wolpert M, Kahne D, Walker S., Biochemistry 48(37), 2009
PMID: 19640006

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31057776
PubMed | Europe PMC

Suchen in

Google Scholar