Indices to Evaluate Self-Organizing Maps for Structures

Steil JJ, Sperduti A (2007)
In: Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007). Neuroinformatics Group, Bielefeld University, Germany (Ed); Bielefeld: Bielefeld University.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA 360.46 KB
Autor*in
Steil, Jochen J.UniBi; Sperduti, Alessandro
herausgebende Körperschaft
Neuroinformatics Group, Bielefeld University, Germany
Abstract / Bemerkung
Self-Organizing Maps for Structures (SOM-SD) are neural networks models capable of processing structured data, such as sequences and trees. The evaluation of the encoding quality achieved by these maps can neither be measured exclusively by the quantization error as in the standard SOM, which fails to capture the structural aspects, nor by indices measuring topology preservation, because often there are no measures available for discrete structures. We propose new indices for the evaluation of encoding quality which are customized to the structural nature of input data. These indices are used to evaluate the quality of SOM-SDs trained on a benchmark dataset introduced earlier in [2]. We show that the proposed indices capture relevant structural features of the tree encoding additional to the statistical features of the training data vectors associated with the tree vertices.
Stichworte
SOM-SD; structured data; classification; performance measure
Erscheinungsjahr
2007
Titel des Konferenzbandes
Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007)
Konferenz
The 6th International Workshop on Self-Organizing Maps (WSOM 2007)
Konferenzort
Bielefeld
Konferenzdatum
2007-09-03 – 2007-09-06
eISBN
978-3-00-022473-7
Page URI
https://pub.uni-bielefeld.de/record/2935138

Zitieren

Steil JJ, Sperduti A. Indices to Evaluate Self-Organizing Maps for Structures. In: Neuroinformatics Group, Bielefeld University, Germany, ed. Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University; 2007.
Steil, J. J., & Sperduti, A. (2007). Indices to Evaluate Self-Organizing Maps for Structures. In Neuroinformatics Group, Bielefeld University, Germany (Ed.), Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007) Bielefeld: Bielefeld University. https://doi.org/10.2390/BIECOLL-WSOM2007-156
Steil, J. J., and Sperduti, A. (2007). “Indices to Evaluate Self-Organizing Maps for Structures” in Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007), Neuroinformatics Group, Bielefeld University, Germany ed. (Bielefeld: Bielefeld University).
Steil, J.J., & Sperduti, A., 2007. Indices to Evaluate Self-Organizing Maps for Structures. In Neuroinformatics Group, Bielefeld University, Germany, ed. Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld: Bielefeld University.
J.J. Steil and A. Sperduti, “Indices to Evaluate Self-Organizing Maps for Structures”, Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007), Neuroinformatics Group, Bielefeld University, Germany, ed., Bielefeld: Bielefeld University, 2007.
Steil, J.J., Sperduti, A.: Indices to Evaluate Self-Organizing Maps for Structures. In: Neuroinformatics Group, Bielefeld University, Germany (ed.) Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007). Bielefeld University, Bielefeld (2007).
Steil, Jochen J., and Sperduti, Alessandro. “Indices to Evaluate Self-Organizing Maps for Structures”. Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007). Ed. Neuroinformatics Group, Bielefeld University, Germany. Bielefeld: Bielefeld University, 2007.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2021-07-26T13:25:10Z
MD5 Prüfsumme
68e2d195caea5fa499949b560b9cd2ab

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar