Kinematic patterns while walking on a slope at different speeds

Dewolf AH, Ivanenko Y, Zelik KE, Lacquaniti F, Willems PA (2018)
Journal of Applied Physiology 125(2): 642-653.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Dewolf, Arthur H; Ivanenko, Yury; Zelik, Karl E; Lacquaniti, Francesco; Willems, Patrick A
Journal of Applied Physiology
Page URI


Dewolf AH, Ivanenko Y, Zelik KE, Lacquaniti F, Willems PA. Kinematic patterns while walking on a slope at different speeds. Journal of Applied Physiology. 2018;125(2):642-653.
Dewolf, A. H., Ivanenko, Y., Zelik, K. E., Lacquaniti, F., & Willems, P. A. (2018). Kinematic patterns while walking on a slope at different speeds. Journal of Applied Physiology, 125(2), 642-653. doi:10.1152/japplphysiol.01020.2017
Dewolf, A. H., Ivanenko, Y., Zelik, K. E., Lacquaniti, F., and Willems, P. A. (2018). Kinematic patterns while walking on a slope at different speeds. Journal of Applied Physiology 125, 642-653.
Dewolf, A.H., et al., 2018. Kinematic patterns while walking on a slope at different speeds. Journal of Applied Physiology, 125(2), p 642-653.
A.H. Dewolf, et al., “Kinematic patterns while walking on a slope at different speeds”, Journal of Applied Physiology, vol. 125, 2018, pp. 642-653.
Dewolf, A.H., Ivanenko, Y., Zelik, K.E., Lacquaniti, F., Willems, P.A.: Kinematic patterns while walking on a slope at different speeds. Journal of Applied Physiology. 125, 642-653 (2018).
Dewolf, Arthur H, Ivanenko, Yury, Zelik, Karl E, Lacquaniti, Francesco, and Willems, Patrick A. “Kinematic patterns while walking on a slope at different speeds”. Journal of Applied Physiology 125.2 (2018): 642-653.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry.
Sombric CJ, Calvert JS, Torres-Oviedo G., Front Physiol 10(), 2019
PMID: 30800072
A kinematic synergy for terrestrial locomotion shared by mammals and birds.
Catavitello G, Ivanenko Y, Lacquaniti F., Elife 7(), 2018
PMID: 30376448

75 References

Daten bereitgestellt von Europe PubMed Central.

Effect of sloped walking on lower limb muscle forces.
Alexander N, Schwameder H., Gait Posture 47(), 2016
PMID: 27264405



Aging does not affect the intralimb coordination elicited by slip-like perturbation of different intensities.
Aprigliano F, Martelli D, Tropea P, Pasquini G, Micera S, Monaco V., J. Neurophysiol. 118(3), 2017
PMID: 28701547
Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila.
Berendes V, Zill SN, Buschges A, Bockemuhl T., J. Exp. Biol. 219(Pt 23), 2016
PMID: 27688052
Individual characteristics of human walking mechanics.
Bianchi L, Angelini D, Lacquaniti F., Pflugers Arch. 436(3), 1998
PMID: 9644215
Kinematic coordination in human gait: relation to mechanical energy cost.
Bianchi L, Angelini D, Orani GP, Lacquaniti F., J. Neurophysiol. 79(4), 1998
PMID: 9535975
The scaling of uphill and downhill locomotion in legged animals.
Birn-Jeffery AV, Higham TE., Integr. Comp. Biol. 54(6), 2014
PMID: 24733147
Kinematic covariation in pediatric, adult and elderly subjects: is gait control influenced by age?
Bleyenheuft C, Detrembleur C., Clin Biomech (Bristol, Avon) 27(6), 2012
PMID: 22386536
Kinematic determinants of human locomotion.
Borghese NA, Bianchi L, Lacquaniti F., J. Physiol. (Lond.) 494 ( Pt 3)(), 1996
PMID: 8865081
Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine
BÜSchges A, Schmitz J, BÄSsler U., J. Exp. Biol. 198(Pt 2), 1995
PMID: 9318078
The sources of external work in level walking and running.
Cavagna GA, Thys H, Zamboni A., J. Physiol. (Lond.) 262(3), 1976
PMID: 1011078

Development of a kinematic coordination pattern in toddler locomotion: planar covariation.
Cheron G, Bouillot E, Dan B, Bengoetxea A, Draye JP, Lacquaniti F., Exp Brain Res 137(3-4), 2001
PMID: 11355390
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Pendular energy transduction within the step during human walking on slopes at different speeds.
Dewolf AH, Ivanenko YP, Lacquaniti F, Willems PA., PLoS ONE 12(10), 2017
PMID: 29073208
The rebound of the body during uphill and downhill running at different speeds.
Dewolf AH, Penailillo LE, Willems PA., J. Exp. Biol. 219(Pt 15), 2016
PMID: 27207641
Kinematic strategies in newly walking toddlers stepping over different support surfaces.
Dominici N, Ivanenko YP, Cappellini G, Zampagni ML, Lacquaniti F., J. Neurophysiol. 103(3), 2010
PMID: 20089810
Templates and anchors: neuromechanical hypotheses of legged locomotion on land.
Full RJ, Koditschek DE., J. Exp. Biol. 202(Pt 23), 1999
PMID: 10562515
Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S., J. Exp. Biol. 215(Pt 24), 2012
PMID: 22972892
Basal ganglia and gait control: apomorphine administration and internal pallidum stimulation in Parkinson's disease.
Grasso R, Peppe A, Stratta F, Angelini D, Zago M, Stanzione P, Lacquaniti F., Exp Brain Res 126(2), 1999
PMID: 10369137

Roll-over characteristics of human walking on inclined surfaces.
Hansen AH, Childress DS, Miff SC., Hum Mov Sci 23(6), 2004
PMID: 15664674
Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking.
Hong SW, Leu TH, Li JD, Wang TM, Ho WP, Lu TW., Gait Posture 39(1), 2013
PMID: 23800709
Redistribution of intra- and inter-limb support moments during downhill walking on different slopes.
Hong SW, Wang TM, Lu TW, Li JD, Leu TH, Ho WP., J Biomech 47(3), 2013
PMID: 24398165
The cost of walking downhill: is the preferred gait energetically optimal?
Hunter LC, Hendrix EC, Dean JC., J Biomech 43(10), 2010
PMID: 20399434
Modular control of limb movements during human locomotion.
Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F., J. Neurosci. 27(41), 2007
PMID: 17928457
On the origin of planar covariation of elevation angles during human locomotion.
Ivanenko YP, d'Avella A, Poppele RE, Lacquaniti F., J. Neurophysiol. 99(4), 2008
PMID: 18272871
Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
Ivanenko YP, Dominici N, Cappellini G, Dan B, Cheron G, Lacquaniti F., J. Exp. Biol. 207(Pt 21), 2004
PMID: 15371487
Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity.
Ivanenko YP, Grasso R, Macellari V, Lacquaniti F., J. Neurophysiol. 87(6), 2002
PMID: 12037209

Energetic consequences of walking like an inverted pendulum: step-to-step transitions.
Kuo AD, Donelan JM, Ruina A., Exerc Sport Sci Rev 33(2), 2005
PMID: 15821430
Kinematic and kinetic comparison of downhill and level walking.
Kuster M, Sakurai S, Wood GA., Clin Biomech (Bristol, Avon) 10(2), 1995
PMID: 11415535
Motor Patterns in Walking.
Lacquaniti F, Grasso R, Zago M., News Physiol. Sci. 14(), 1999
PMID: 11390844
Kinematic control of walking.
Lacquaniti F, Ivanenko YP, Zago M., Arch Ital Biol 140(4), 2002
PMID: 12228979
Patterned control of human locomotion.
Lacquaniti F, Ivanenko YP, Zago M., J. Physiol. (Lond.) 590(10), 2012
PMID: 22411012
Electromyographic and kinematic analysis of graded treadmill walking and the implications for knee rehabilitation.
Lange GW, Hintermeister RA, Schlegel T, Dillman CJ, Steadman JR., J Orthop Sports Phys Ther 23(5), 1996
PMID: 8728527
The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis.
Lay AN, Hass CJ, Gregor RJ., J Biomech 39(9), 2005
PMID: 15990102
Determinants of the center of mass trajectory in human walking and running.
Lee CR, Farley CT., J. Exp. Biol. 201(Pt 21), 1998
PMID: 9866878
Postural adaptation to walking on inclined surfaces: I. Normal strategies.
Leroux A, Fung J, Barbeau H., Gait Posture 15(1), 2002
PMID: 11809582
Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait.
Leteneur S, Gillet C, Sadeghi H, Allard P, Barbier F., Clin Biomech (Bristol, Avon) 24(2), 2008
PMID: 19091448
Quantitative analysis of human movement synergies: constructive pattern analysis for gait.
Mah CD, Hulliger M, Lee RG, O'Callaghan IS., J Mot Behav 26(2), 1994
PMID: 15753062
Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
Mantziaris C, Bockemuhl T, Holmes P, Borgmann A, Daun S, Buschges A., J. Neurophysiol. 118(4), 2017
PMID: 28724783
Locomotor patterns in cerebellar ataxia.
Martino G, Ivanenko YP, Serrao M, Ranavolo A, d'Avella A, Draicchio F, Conte C, Casali C, Lacquaniti F., J. Neurophysiol. 112(11), 2014
PMID: 25185815

Gait dynamics on an inclined walkway.
McIntosh AS, Beatty KT, Dwan LN, Vickers DR., J Biomech 39(13), 2005
PMID: 16169000
Determination of the vertical ground reaction forces acting upon individual limbs during healthy and clinical gait.
Meurisse GM, Dierick F, Schepens B, Bastien GJ., Gait Posture 43(), 2015
PMID: 26549482
Locomotor adaptations for changes in the slope of the walking surface.
Prentice SD, Hasler EN, Groves JJ, Frank JS., Gait Posture 20(3), 2004
PMID: 15531172


Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement.
Ting LH, Chvatal SA, Safavynia SA, McKay JL., Int J Numer Method Biomed Eng 28(10), 2012
PMID: 23027631
Compass gait mechanics account for top walking speeds in ducks and humans.
Usherwood JR, Szymanek KL, Daley MA., J. Exp. Biol. 211(Pt 23), 2008
PMID: 19011215
Measurement of lumbar spine kinematics in incline treadmill walking.
Vogt L, Banzer W., Gait Posture 9(1), 1999
PMID: 10575066
Does an instrumented treadmill correctly measure the ground reaction forces?
Willems PA, Gosseye TP., Biol Open 2(12), 2013
PMID: 24285705

Winter, 1991
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
The influence of deformation height on estimating the center of pressure during level and cross-slope walking on sand.
Xu H, Wang Y, Greenland K, Bloswick D, Merryweather A., Gait Posture 42(2), 2015
PMID: 25975215
Distinct sets of locomotor modules control the speed and modes of human locomotion.
Yokoyama H, Ogawa T, Kawashima N, Shinya M, Nakazawa K., Sci Rep 6(), 2016
PMID: 27805015


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 29698109
PubMed | Europe PMC

Suchen in

Google Scholar