Transfer of spatial contact information among limbs and the notion of peripersonal space in insects

Dürr V, Schilling M (2018)
Frontiers in Computational Neuroscience 12: 101.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 11.75 MB
Abstract / Bemerkung
Internal representation of far-range space in insects is well established, as it is necessary for navigation behaviour. Although it is likely that insects also have an internal representation of near-range space, the behavioural evidence for the latter is much less evident. Here, we estimate the size and shape of the spatial equivalent of a near-range representation that is constituted by somatosensory sampling events. To do so, we use a large set of experimental whole-body motion capture data on unrestrained walking, climbing and searching behaviour in stick insects of the species Carausius morosus to delineate 'action volumes' and 'contact volumes' for both antennae and all six legs. As these volumes are derived from recorded sampling events, they comprise a volume equivalent to a representation of coinciding somatosensory and motor activity. Accordingly, we define this volume as the peripersonal space of an insect. It is of immediate behavioural relevance, because it comprises all potential external object locations within the action range of the body.In a next step, we introduce the notion of an affordance space as that part of peripersonal space within which contact-induced spatial estimates lie within the action ranges of more than one limb. Because the action volumes of limbs overlap in this affordance space, spatial information from one limb can be used to control the movement of another limb. Thus, it gives rise to an affordance as known for contact-induced reaching movements and spatial coordination of footfall patterns in stick insects. Finally, we probe the computational properties of the experimentally derived affordance space for pairs of neighbouring legs. This is done by use of artificial neural networks that map the posture of one leg into a target posture of another leg with identical foot position.
Frontiers in Computational Neuroscience
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Dürr V, Schilling M. Transfer of spatial contact information among limbs and the notion of peripersonal space in insects. Frontiers in Computational Neuroscience. 2018;12: 101.
Dürr, V., & Schilling, M. (2018). Transfer of spatial contact information among limbs and the notion of peripersonal space in insects. Frontiers in Computational Neuroscience, 12, 101. doi:10.3389/fncom.2018.00101
Dürr, Volker, and Schilling, Malte. 2018. “Transfer of spatial contact information among limbs and the notion of peripersonal space in insects”. Frontiers in Computational Neuroscience 12: 101.
Dürr, V., and Schilling, M. (2018). Transfer of spatial contact information among limbs and the notion of peripersonal space in insects. Frontiers in Computational Neuroscience 12:101.
Dürr, V., & Schilling, M., 2018. Transfer of spatial contact information among limbs and the notion of peripersonal space in insects. Frontiers in Computational Neuroscience, 12: 101.
V. Dürr and M. Schilling, “Transfer of spatial contact information among limbs and the notion of peripersonal space in insects”, Frontiers in Computational Neuroscience, vol. 12, 2018, : 101.
Dürr, V., Schilling, M.: Transfer of spatial contact information among limbs and the notion of peripersonal space in insects. Frontiers in Computational Neuroscience. 12, : 101 (2018).
Dürr, Volker, and Schilling, Malte. “Transfer of spatial contact information among limbs and the notion of peripersonal space in insects”. Frontiers in Computational Neuroscience 12 (2018): 101.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

Link(s) zu Volltext(en)
Access Level
OA Open Access

72 References

Daten bereitgestellt von Europe PubMed Central.

Local control of leg movements and motor patterns during grooming in locusts.
Berkowitz A, Laurent G., J. Neurosci. 16(24), 1996
PMID: 8987832
Mechanisms of stick insect locomotion in a gap-crossing paradigm.
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308
A modular dynamic sensorimotor model for affordances learning, sequences planning, and tool-use
Braud R., Pitti A., Gaussier P.., 2018
An Action Field Theory of Peripersonal Space.
Bufacchi RJ, Iannetti GD., Trends Cogn. Sci. (Regul. Ed.) 22(12), 2018
PMID: 30337061
Tool-use induces morphological updating of the body schema.
Cardinali L, Frassinetti F, Brozzoli C, Urquizar C, Roy AC, Farne A., Curr. Biol. 19(12), 2009
PMID: 19549491
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Frontier of Self and Impact Prediction.
Clery J, Hamed SB., Front Psychol 9(), 2018
PMID: 29997556
Are there distinct neural representations of object and limb dynamics?
Cothros N, Wong JD, Gribble PL., Exp Brain Res 173(4), 2006
PMID: 16525798
Movement of joint angles in the legs of a walking insect, Carausius morosus
Cruse H., Bartling C.., 1995
Walking, a complex behaviour controlled by simple networks
Cruse H., Bartling C., Dreifert M., Schmitz J., Brunn D., Dean J.., 1995
Tight turns in stick insects.
Cruse H, Ehmanns I, Stubner S, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195(3), 2009
PMID: 19137316
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Internal models underlying grasp can be additively combined.
Davidson PR, Wolpert DM., Exp Brain Res 155(3), 2004
PMID: 14714157
Coding proprioceptive information to control movement to a target: simulation with a simple neural network
Dean J.., 1990
Control of walking in the stick insect: From behavior and physiology to modeling
Dean J., Kindermann T., Schmitz J., Schumm M., Cruse H.., 1999
Stick insect locomotion on a walking wheel: interleg coordination of leg position
Dean J., Wendler G.., 1983
Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration
Dürr V., Theunissen L., Dallmann C., Hoinville T., Schmitz J.., 2018
A faithful internal representation of walking movements in the Drosophila visual system.
Fujiwara T, Cruz TL, Bohnslav JP, Chiappe ME., Nat. Neurosci. 20(1), 2016
PMID: 27798632
The theory of affordances
Gibson J.., 1977
Understanding the difficulty of training deep feedforward neural networks
Glorot X., Bengio Y.., 2010
A neural circuit architecture for angular integration in Drosophila.
Green J, Adachi A, Shah KK, Hirokawa JD, Magani PS, Maimon G., Nature 546(7656), 2017
PMID: 28538731
Editorial: The Insect Central Complex-From Sensory Coding to Directing Movement.
Heinze S, Pfeiffer K., Front Behav Neurosci 12(), 2018
PMID: 30104965
Body schema in robotics: a review
Hoffmann M., Marques H., Arieta A., Sumioka H., Pfeifer R.., 2010
Sensory mechanisms of eye cleaning behavior in the cricket Gryllus campestris
Honegger H.-W., Reif H., Müller W.., 1979
Computational mechanisms of mechanosensory processing in the cricket.
Jacobs GA, Miller JP, Aldworth Z., J. Exp. Biol. 211(Pt 11), 2008
PMID: 18490398

Jeffery K.., 2003
Internal models for motor control and trajectory planning.
Kawato M., Curr. Opin. Neurobiol. 9(6), 1999
PMID: 10607637
Adam: a method for stochastic optimization
Kingma D., Ba J.., 2015
The visually controlled prey-capture behaviour of the European mantispid Mantispa styriaca.
Kral K, Vernik M, Devetak D., J. Exp. Biol. 203(Pt 14), 2000
PMID: 10862724
Active tactile sampling by an insect in a step-climbing paradigm.
Krause AF, Durr V., Front Behav Neurosci 6(), 2012
PMID: 22754513

Krause T.., 2015
Multi-modal convergence maps: from body schema and self-representation to mental imagery
Lallee S., Dominey P.., 2013
Visuotactile representation of peripersonal space: a neural network study.
Magosso E, Zavaglia M, Serino A, di Pellegrino G, Ursino M., Neural Comput 22(1), 2010
PMID: 19764874
On the other hand: dummy hands and peripersonal space.
Makin TR, Holmes NP, Ehrsson HH., Behav. Brain Res. 191(1), 2008
PMID: 18423906
Hit distance and predatory strike of praying mantis
Maldonado H., Levin L., Pita J.., 1967
Central projections of sensory cells of the midleg of the locust, Schistocerca gregaria
Mücke A., Lakes-Harlan R.., 1995
Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect.
Newland PL, Rogers SM, Gaaboub I, Matheson T., J. Comp. Neurol. 425(1), 2000
PMID: 10940944
Visual targeting of forelimbs in ladder-walking locusts.
Niven JE, Buckingham CJ, Lumley S, Cuttle MF, Laughlin SB., Curr. Biol. 20(1), 2009
PMID: 20036539
Visually targeted reaching in horse-head grasshoppers.
Niven JE, Ott SR, Rogers SM., Proc. Biol. Sci. 279(1743), 2012
PMID: 22764161
Wing hair sensilla underlying aimed hindleg scratching of the locust.
Page KL, Matheson T., J. Exp. Biol. 207(Pt 15), 2004
PMID: 15201302
Cooperative tool-use reveals peripersonal and interpersonal spaces are dissociable.
Patane I, Farne A, Frassinetti F., Cognition 166(), 2017
PMID: 28554081
Goal-driven behavioral adaptations in gap-climbing Drosophila.
Pick S, Strauss R., Curr. Biol. 15(16), 2005
PMID: 16111941
The neuropsychology of 3-D space.
Previc FH., Psychol Bull 124(2), 1998
PMID: 9747184
Peripersonal space representation develops independently from visual experience.
Ricciardi E, Menicagli D, Leo A, Costantini M, Pietrini P, Sinigaglia C., Sci Rep 7(1), 2017
PMID: 29247162
Insect walking and biorobotics: a relationship with mutual benefits
Ritzmann R., Quinn R., Watson J., Zill S.., 2000
Exploration behaviors, body representations, and simulation processes for the development of cognition in artificial agents
Schillaci G., Hafner V., Lara B.., 2016
Universally manipulable body models - dual quaternion representations in layered and dynamic MMCs
Schilling M.., 2011
Training of a Neural Network for learning a model of joint transformations
Schilling M., Dürr V.., 2018
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
No need for a body model: positive velocity feedback for the control of an 18-DOF robot walker
Schmitz J., Schneider A., Schilling M., Cruse H.., 2008
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila.
Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM Jr, Mensh BD, Simpson JH., Elife 3(), 2014
PMID: 25139955
Higher brain centers for intelligent motor control in insects
Strauss R., Krause T., Berg C., Zäpf B.., 2011
Comparative whole-body kinematics of closely related insect species with different body morphology.
Theunissen LM, Bekemeier HH, Durr V., J. Exp. Biol. 218(Pt 3), 2014
PMID: 25524984
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Durr V., PLoS ONE 8(12), 2013
PMID: 24376877
Spatial co-ordination of foot contacts in unrestrained climbing insects.
Theunissen LM, Vikram S, Durr V., J. Exp. Biol. 217(Pt 18), 2014
PMID: 25013102
Topological and modality-specific representation of somatosensory information in the fly brain.
Tsubouchi A, Yano T, Yokoyama TK, Murtin C, Otsuna H, Ito K., Science 358(6363), 2017
PMID: 29097543
Angular velocity integration in a fly heading circuit.
Turner-Evans D, Wegener S, Rouault H, Franconville R, Wolff T, Seelig JD, Druckmann S, Jayaraman V., Elife 6(), 2017
PMID: 28530551
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 30618693
PubMed | Europe PMC

Suchen in

Google Scholar