Muscle patterns underlying voluntary modulation of co-contraction

Borzelli D, Cesqui B, Berger DJ, Burdet E, d’Avella A (2018)
PLOS ONE 13(10): e0205911.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Borzelli, Daniele; Cesqui, Benedetta; Berger, Denise J.; Burdet, Etienne; d’Avella, Andrea
Einrichtung
Erscheinungsjahr
2018
Zeitschriftentitel
PLOS ONE
Band
13
Ausgabe
10
Art.-Nr.
e0205911
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2932362

Zitieren

Borzelli D, Cesqui B, Berger DJ, Burdet E, d’Avella A. Muscle patterns underlying voluntary modulation of co-contraction. PLOS ONE. 2018;13(10): e0205911.
Borzelli, D., Cesqui, B., Berger, D. J., Burdet, E., & d’Avella, A. (2018). Muscle patterns underlying voluntary modulation of co-contraction. PLOS ONE, 13(10), e0205911. doi:10.1371/journal.pone.0205911
Borzelli, D., Cesqui, B., Berger, D. J., Burdet, E., and d’Avella, A. (2018). Muscle patterns underlying voluntary modulation of co-contraction. PLOS ONE 13:e0205911.
Borzelli, D., et al., 2018. Muscle patterns underlying voluntary modulation of co-contraction. PLOS ONE, 13(10): e0205911.
D. Borzelli, et al., “Muscle patterns underlying voluntary modulation of co-contraction”, PLOS ONE, vol. 13, 2018, : e0205911.
Borzelli, D., Cesqui, B., Berger, D.J., Burdet, E., d’Avella, A.: Muscle patterns underlying voluntary modulation of co-contraction. PLOS ONE. 13, : e0205911 (2018).
Borzelli, Daniele, Cesqui, Benedetta, Berger, Denise J., Burdet, Etienne, and d’Avella, Andrea. “Muscle patterns underlying voluntary modulation of co-contraction”. PLOS ONE 13.10 (2018): e0205911.

53 References

Daten bereitgestellt von Europe PubMed Central.

Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles
AUTHOR UNKNOWN, 1984
Compensation for mechanically unstable loading in voluntary wrist movement.
Milner TE, Cloutier C., Exp Brain Res 94(3), 1993
PMID: 8359266

AUTHOR UNKNOWN, 2013
Damping of the wrist joint during voluntary movement.
Milner TE, Cloutier C., Exp Brain Res 122(3), 1998
PMID: 9808304
The central nervous system stabilizes unstable dynamics by learning optimal impedance.
Burdet E, Osu R, Franklin DW, Milner TE, Kawato M., Nature 414(6862), 2001
PMID: 11719805
Impedance is modulated to meet accuracy demands during goal-directed arm movements.
Selen LP, Beek PJ, van Dieen JH., Exp Brain Res 172(1), 2005
PMID: 16372169
Impedance control reduces instability that arises from motor noise.
Selen LP, Franklin DW, Wolpert DM., J. Neurosci. 29(40), 2009
PMID: 19812335
Role of cocontraction in arm movement accuracy.
Gribble PL, Mullin LI, Cothros N, Mattar A., J. Neurophysiol. 89(5), 2003
PMID: 12611935
Electromyographic correlates of learning an internal model of reaching movements.
Thoroughman KA, Shadmehr R., J. Neurosci. 19(19), 1999
PMID: 10493757
CNS learns stable, accurate, and efficient movements using a simple algorithm.
Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, Kawato M., J. Neurosci. 28(44), 2008
PMID: 18971459
Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
Franklin DW, Osu R, Burdet E, Kawato M, Milner TE., J. Neurophysiol. 90(5), 2003
PMID: 14615432
Postural force fields of the human arm and their role in generating multijoint movements.
Shadmehr R, Mussa-Ivaldi FA, Bizzi E., J. Neurosci. 13(1), 1993
PMID: 8423483
Human hand impedance characteristics during maintained posture.
Tsuji T, Morasso PG, Goto K, Ito K., Biol Cybern 72(6), 1995
PMID: 7612720
The control of stable postures in the multijoint arm.
McIntyre J, Mussa-Ivaldi FA, Bizzi E., Exp Brain Res 110(2), 1996
PMID: 8836689
Voluntary control of static endpoint stiffness during force regulation tasks.
Perreault EJ, Kirsch RF, Crago PE., J. Neurophysiol. 87(6), 2002
PMID: 12037183
Adaptive control of stiffness to stabilize hand position with large loads.
Franklin DW, Milner TE., Exp Brain Res 152(2), 2003
PMID: 12845511

AUTHOR UNKNOWN, 0
Learning to control arm stiffness under static conditions.
Darainy M, Malfait N, Gribble PL, Towhidkhah F, Ostry DJ., J. Neurophysiol. 92(6), 2004
PMID: 15282262
Neural, mechanical, and geometric factors subserving arm posture in humans.
Mussa-Ivaldi FA, Hogan N, Bizzi E., J. Neurosci. 5(10), 1985
PMID: 4045550
Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics.
Franklin DW, Burdet E, Osu R, Kawato M, Milner TE., Exp Brain Res 151(2), 2003
PMID: 12783150

AUTHOR UNKNOWN, 1967

AUTHOR UNKNOWN, 2015
Effort minimization and synergistic muscle recruitment for three-dimensional force generation.
Borzelli D, Berger DJ, Pai DK, d'Avella A., Front Comput Neurosci 7(), 2013
PMID: 24391581

AUTHOR UNKNOWN, 2011
Differences in adaptation rates after virtual surgeries provide direct evidence for modularity.
Berger DJ, Gentner R, Edmunds T, Pai DK, d'Avella A., J. Neurosci. 33(30), 2013
PMID: 23884944

AUTHOR UNKNOWN, 2010
The Fundamental Theorem of Linear Algebra
AUTHOR UNKNOWN, 1993
Arm muscle activation for static forces in three-dimensional space.
Flanders M, Soechting JF., J. Neurophysiol. 64(6), 1990
PMID: 2074466

AUTHOR UNKNOWN, 0
A computational model of muscle recruitment for wrist movements.
Fagg AH, Shah A, Barto AG., J. Neurophysiol. 88(6), 2002
PMID: 12466451
Cosine tuning minimizes motor errors.
Todorov E., Neural Comput 14(6), 2002
PMID: 12020444
Time-varying mechanical behavior of multijointed arm in man.
Lacquaniti F, Carrozzo M, Borghese NA., J. Neurophysiol. 69(5), 1993
PMID: 8509826
Endpoint stiffness of the arm is directionally tuned to instability in the environment.
Franklin DW, Liaw G, Milner TE, Osu R, Burdet E, Kawato M., J. Neurosci. 27(29), 2007
PMID: 17634365
Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography.
Hoppner H, Große-Dunker M, Stillfried G, Bayer J, van der Smagt P., Front Neurorobot 11(), 2017
PMID: 28588472
Robustness of muscle synergies during visuomotor adaptation.
Gentner R, Edmunds T, Pai DK, d'Avella A., Front Comput Neurosci 7(), 2013
PMID: 24027524
Muscle cocontraction following dynamics learning.
Darainy M, Ostry DJ., Exp Brain Res 190(2), 2008
PMID: 18584164
Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG.
Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M., J. Neurophysiol. 88(2), 2002
PMID: 12163548
Muscle coordination is habitual rather than optimal.
de Rugy A, Loeb GE, Carroll TJ., J. Neurosci. 32(21), 2012
PMID: 22623684
Motor memory and local minimization of error and effort, not global optimization, determine motor behavior.
Ganesh G, Haruno M, Kawato M, Burdet E., J. Neurophysiol. 104(1), 2010
PMID: 20484533
Effective force control by muscle synergies.
Berger DJ, d'Avella A., Front Comput Neurosci 8(), 2014
PMID: 24860489
Structured variability of muscle activations supports the minimal intervention principle of motor control.
Valero-Cuevas FJ, Venkadesan M, Todorov E., J. Neurophysiol. 102(1), 2009
PMID: 19369362
Myoelectric signal versus force relationship in different human muscles.
Lawrence JH, De Luca CJ., J Appl Physiol Respir Environ Exerc Physiol 54(6), 1983
PMID: 6874489
Neural, mechanical, and geometric factors subserving arm posture in humans.
Mussa-Ivaldi FA, Hogan N, Bizzi E., J. Neurosci. 5(10), 1985
PMID: 4045550

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30339703
PubMed | Europe PMC

Suchen in

Google Scholar