Feel-good robotics: requirements on touch for embodiment in assistive robotics

Beckerle P, Kõiva R, Kirchner EA, Bekrater-Bodmann R, Dosen S, Christ O, Abbink DA, Castellini C, Lenggenhager B (2018)
Frontiers in Neurorobotics 12: 84.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Beckerle, Philipp; Kõiva, RistoUniBi ; Kirchner, Elsa Andrea; Bekrater-Bodmann, Robin; Dosen, Strahinja; Christ, Oliver; Abbink, David A.; Castellini, Claudio; Lenggenhager, Bigna
Abstract / Bemerkung
The feeling of embodiment, i.e., experiencing the body as belonging to oneself and being able to integrate objects into one’s bodily self-representation, is a key aspect of human self-consciousness and has been shown to importantly shape human cognition. An extension of such feelings towards robots has been argued as being crucial for assistive technologies aiming at restoring, extending, or simulating sensorimotor functions. Empirical and theoretical work illustrates the importance of sensory feedback for the feeling of embodiment and also immersion; we focus on the the perceptual level of touch and the role of tactile feedback in various assistive robotic devices. We critically review how different facets of tactile perception in humans, i.e., affective, social, and self-touch, might influence embodiment. This is particularly important as current assistive robotic devices – such as prostheses, orthoses, exoskeletons, and devices for teleoperation – often limit touch to the aspect of low-density and spatially constrained haptic feedback, i.e., the mere touch sensation linked to an action. Here, we analyze, discuss, and propose how and to what degree tactile feedback might increase the embodiment of certain robotic devices, e.g., prostheses, and the feeling of immersion in human-robot interaction, e.g., in teleoperation. Based on recent findings from cognitive psychology on interactive processes between touch and embodiment, we discuss technical solutions for specific applications, which might be used to enhance embodiment, and facilitate the study of how embodiment might alter human-robot interactions. We postulate that high-density and large surface sensing and stimulation are required to foster embodiment of such assistive devices.
Embodiment; affective touch; social touch; self-touch; human-machine interfaces; tactile feedback; assistive robotics
Frontiers in Neurorobotics
Page URI


Beckerle P, Kõiva R, Kirchner EA, et al. Feel-good robotics: requirements on touch for embodiment in assistive robotics. Frontiers in Neurorobotics. 2018;12:84.
Beckerle, P., Kõiva, R., Kirchner, E. A., Bekrater-Bodmann, R., Dosen, S., Christ, O., Abbink, D. A., et al. (2018). Feel-good robotics: requirements on touch for embodiment in assistive robotics. Frontiers in Neurorobotics, 12, 84. doi:10.3389/fnbot.2018.00084
Beckerle, Philipp, Kõiva, Risto, Kirchner, Elsa Andrea, Bekrater-Bodmann, Robin, Dosen, Strahinja, Christ, Oliver, Abbink, David A., Castellini, Claudio, and Lenggenhager, Bigna. 2018. “Feel-good robotics: requirements on touch for embodiment in assistive robotics”. Frontiers in Neurorobotics 12: 84.
Beckerle, P., Kõiva, R., Kirchner, E. A., Bekrater-Bodmann, R., Dosen, S., Christ, O., Abbink, D. A., Castellini, C., and Lenggenhager, B. (2018). Feel-good robotics: requirements on touch for embodiment in assistive robotics. Frontiers in Neurorobotics 12, 84.
Beckerle, P., et al., 2018. Feel-good robotics: requirements on touch for embodiment in assistive robotics. Frontiers in Neurorobotics, 12, p 84.
P. Beckerle, et al., “Feel-good robotics: requirements on touch for embodiment in assistive robotics”, Frontiers in Neurorobotics, vol. 12, 2018, pp. 84.
Beckerle, P., Kõiva, R., Kirchner, E.A., Bekrater-Bodmann, R., Dosen, S., Christ, O., Abbink, D.A., Castellini, C., Lenggenhager, B.: Feel-good robotics: requirements on touch for embodiment in assistive robotics. Frontiers in Neurorobotics. 12, 84 (2018).
Beckerle, Philipp, Kõiva, Risto, Kirchner, Elsa Andrea, Bekrater-Bodmann, Robin, Dosen, Strahinja, Christ, Oliver, Abbink, David A., Castellini, Claudio, and Lenggenhager, Bigna. “Feel-good robotics: requirements on touch for embodiment in assistive robotics”. Frontiers in Neurorobotics 12 (2018): 84.

81 References

Daten bereitgestellt von Europe PubMed Central.

Haptic object recognition in underwater and deep-sea environments
Aggarwal A., Kampmann P., Lemburg J., Kirchner F.., 2015
Sensory feedback in upper limb prosthetics.
Antfolk C, D'Alonzo M, Rosen B, Lundborg G, Sebelius F, Cipriani C., Expert Rev Med Devices 10(1), 2013
PMID: 23278223
Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback.
Antfolk C, D'Alonzo M, Controzzi M, Lundborg G, Rosen B, Sebelius F, Cipriani C., IEEE Trans Neural Syst Rehabil Eng 21(1), 2012
PMID: 23033439
Haptic interfaces: a new interaction paradigm
Avizzano C., Bergamasco M.., 1999
Effects of vibrotactile feedback on human learning of arm motions.
Bark K, Hyman E, Tan F, Cha E, Jax SA, Buxbaum LJ, Kuchenbecker KJ., IEEE Trans Neural Syst Rehabil Eng 23(1), 2014
PMID: 25486644
A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.
Beckerle P, Salvietti G, Unal R, Prattichizzo D, Rossi S, Castellini C, Hirche S, Endo S, Amor HB, Ciocarlie M, Mastrogiovanni F, Argall BD, Bianchi M., Front Neurorobot 11(), 2017
PMID: 28588473
The perceptual and neuronal stability of the rubber hand illusion across contexts and over time.
Bekrater-Bodmann R, Foell J, Diers M, Flor H., Brain Res. 1452(), 2012
PMID: 22459041
Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
Ben-Tzvi P, Ma Z., IEEE Trans Neural Syst Rehabil Eng 23(6), 2014
PMID: 25494512
Rubber hands 'feel' touch that eyes see.
Botvinick M, Cohen J., Nature 391(6669), 1998
PMID: 9486643
The Critical Role of Self-Contact for Embodiment in Virtual Reality.
Bovet S, Debarba HG, Herbelin B, Molla E, Boulic R., IEEE Trans Vis Comput Graph 24(4), 2018
PMID: 29543161
The Development of Tactile Perception.
Bremner AJ, Spence C., Adv Child Dev Behav 52(), 2017
PMID: 28215286
Flexible and stretchable fabric-based tactile sensor
Büscher G., Kõiva R., Schürmann C., Haschke R., Ritter H.., 2015
Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography.
Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi A, Caputo B, Craelius W, Dosen S, Englehart K, Farina D, Gijsberts A, Godfrey SB, Hargrove L, Ison M, Kuiken T, Markovic M, Pilarski PM, Rupp R, Scheme E., Front Neurorobot 8(), 2014
PMID: 25177292
Multisensory Integration in the Virtual Hand Illusion with Active Movement.
Choi W, Li L, Satoh S, Hachimura K., Biomed Res Int 2016(), 2016
PMID: 27847822
Interoceptive ingredients of body ownership: Affective touch and cardiac awareness in the rubber hand illusion.
Crucianelli L, Krahe C, Jenkinson PM, Fotopoulou AK., Cortex 104(), 2017
PMID: 28532579
Bodily pleasure matters: velocity of touch modulates body ownership during the rubber hand illusion.
Crucianelli L, Metcalf NK, Fotopoulou AK, Jenkinson PM., Front Psychol 4(), 2013
PMID: 24115938
A social haptic device to create continuous lateral motion using sequential normal indentation
Culbertson H., Nunez C., Israr A., Lau F., Abnousi F., Okamura A.., 2018
Tactile sensing – from humans to humanoids
Dahiya R., Metta G., Valle M., Sandini G.., 2010
Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations.
D'Alonzo M, Clemente F, Cipriani C., IEEE Trans Neural Syst Rehabil Eng 23(3), 2014
PMID: 25051556
Feeling numbness for someone else's finger.
Dieguez S, Mercier MR, Newby N, Blanke O., Curr. Biol. 19(24), 2009
PMID: 20064416
Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art
Dollar A., Herr H.., 2008
Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses.
Dosen S, Markovic M, Strbac M, Belic M, Kojic V, Bijelic G, Keller T, Farina D., IEEE Trans Neural Syst Rehabil Eng 25(3), 2016
PMID: 27071179
Upper limb amputees can be induced to experience a rubber hand as their own.
Ehrsson HH, Rosen B, Stockselius A, Ragno C, Kohler P, Lundborg G., Brain 131(Pt 12), 2008
PMID: 19074189
Simplifying telerobotics: wearability and teleimpedance improves human-robot interactions in teleoperation
Fani S., Ciotti S., Catalano M., Grioli G., Tognetti A., Valenza G.., 2018
Measuring the improvement of the interaction comfort of a wearable exoskeleton
Folgheraiter M., Jordan M., Straube S., Seeland A., Kim S., Kirchner E.., 2012
A System for Electrotactile Feedback Using Electronic Skin and Flexible Matrix Electrodes: Experimental Evaluation.
Franceschi M, Seminara L, Dosen S, Strbac M, Valle M, Farina D., IEEE Trans Haptics 10(2), 2016
PMID: 27775538
A force-feedback exoskeleton for upper-limb rehabilitation in virtual reality
Frisoli A., Salsedo F., Bergamasco M., Rossi B., Carboncini M.., 2009
Towards multimodal haptics for teleoperation: design of a tactile thermal display
Gallo S., Santos-Carreras L., Rognini G., Hara M., Yamamoto A., Higuchi T.., 2012
Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.
Gomez-Rodriguez M, Peters J, Hill J, Scholkopf B, Gharabaghi A, Grosse-Wentrup M., J Neural Eng 8(3), 2011
PMID: 21474878
The Virtual Midas Touch: Helping Behavior After a Mediated Social Touch.
Haans A, Usselsteijn WA., IEEE Trans Haptics 2(3), 2009
PMID: 27788077
User adaptation in Myoelectric Man-Machine Interfaces.
Hahne JM, Markovic M, Farina D., Sci Rep 7(1), 2017
PMID: 28667260

Ham R., Cotton L.., 2013
Voluntary self-touch increases body ownership.
Hara M, Pozeg P, Rognini G, Higuchi T, Fukuhara K, Yamamoto A, Higuchi T, Blanke O, Salomon R., Front Psychol 6(), 2015
PMID: 26617534
The communication of emotion via touch.
Hertenstein MJ, Holmes R, McCullough M, Keltner D., Emotion 9(4), 2009
PMID: 19653781
Touch communicates distinct emotions.
Hertenstein MJ, Keltner D, App B, Bulleit BA, Jaskolka AR., Emotion 6(3), 2006
PMID: 16938094
Virtual environments for motor rehabilitation: review.
Holden MK., Cyberpsychol Behav 8(3), 2005
PMID: 15971970
Design of a wearable robotic hand to investigate multisensory illusions and the bodily self of humans
Huynh T., Scherf A., Bittner A., Saetta G., Lenggenhager B., Beckerle P.., 2018
Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it.
Imaizumi S, Asai T, Koyama S., Conscious Cogn 45(), 2016
PMID: 27580459
Stretchable silicon nanoribbon electronics for skin prosthesis.
Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee ST, Kim JH, Choi SH, Hyeon T, Kim DH., Nat Commun 5(), 2014
PMID: 25490072
On the design of miniature haptic devices for upper extremity prosthetics
Kim K., Colgate J., Santos-Munné J., Makhlin A., Peshkin M.., 2010
A highly sensitive 3d-shaped tactile sensor
Kõiva R., Zenker M., Schürmann C., Haschke R., Ritter H.., 2013
Non-invasive stimulation-based tactile sensation for upper-extremity prosthesis: a review
Li K., Fang Y., Zhou Y., Liu H.., 2017
Coding of pleasant touch by unmyelinated afferents in humans.
Loken LS, Wessberg J, Morrison I, McGlone F, Olausson H., Nat. Neurosci. 12(5), 2009
PMID: 19363489
Haptic guidance of light-exoskeleton for arm-rehabilitation tasks
Lugo-Villeda L., Frisoli A., Sandoval-Gonzalez O., Padilla M., Parra-Vega V., Avizzano C.., 2009
Neurocognitive barriers to the embodiment of technology
Makin T., de F., Faisal A.., 2017
The capio active upper body exoskeleton and its application for teleoperation
Mallwitz M., Will N., Teiwes J., Kirchner E.., 2015
Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees.
Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA., Brain 134(Pt 3), 2011
PMID: 21252109
Extended physiologic taction: design and evaluation of a proportional force feedback system.
Meek SG, Jacobsen SC, Goulding PP., J Rehabil Res Dev 26(3), 1989
PMID: 2666644
Prostheses as extensions of the body: Progress and challenges.
Niedernhuber M, Barone DG, Lenggenhager B., Neurosci Biobehav Rev 92(), 2018
PMID: 29772308
Haptic interfaces
O'Malley M., Gupta A.., 2008
Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives.
Pacchierotti C, Sinclair S, Solazzi M, Frisoli A, Hayward V, Prattichizzo D., IEEE Trans Haptics 10(4), 2017
PMID: 28500008
Electro-tactile feedback system for achieving embodiment in a tele-operated robot
Pamungkas D., Ward K.., 2014
The embodiment of assistive devices-from wheelchair to exoskeleton.
Pazzaglia M, Molinari M., Phys Life Rev 16(), 2015
PMID: 26708357
Immersive robot control in virtual reality to command robots in space missions
Planthaber S., Mallwitz M., Kirchner E.., 2018
A meta-analysis of vibrotactile and visual information displays for improving task performance
Prewett M., Elliott L., Walvoord A., Coovert M.., 2012
Restoring natural sensory feedback in real-time bidirectional hand prostheses.
Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, Granata G, Oddo CM, Citi L, Ciancio AL, Cipriani C, Carrozza MC, Jensen W, Guglielmelli E, Stieglitz T, Rossini PM, Micera S., Sci Transl Med 6(222), 2014
PMID: 24500407
Referral of sensation to an advanced humanoid robotic hand prosthesis.
Rosen B, Ehrsson HH, Antfolk C, Cipriani C, Sebelius F, Lundborg G., Scand J Plast Reconstr Surg Hand Surg 43(5), 2009
PMID: 19863429
Applications of sensory feedback in motorized upper extremity prosthesis: a review.
Schofield JS, Evans KR, Carey JP, Hebert JS., Expert Rev Med Devices 11(5), 2014
PMID: 24928327
Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.
Sengul A, van Elk M, Rognini G, Aspell JE, Bleuler H, Blanke O., PLoS ONE 7(12), 2012
PMID: 23227142
Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback.
Shokur S, Gallo S, Moioli RC, Donati ARC, Morya E, Bleuler H, Nicolelis MAL., Sci Rep 6(), 2016
PMID: 27640345
Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.
Sigrist R, Rauter G, Marchal-Crespo L, Riener R, Wolf P., Exp Brain Res 233(3), 2014
PMID: 25511166
A review of non-invasive sensory feedback methods for transradial prosthetic hands
Stephens-Fripp B., Alici G., Mutlu R.., 2018
Integrated and flexible multichannel interface for electrotactile stimulation.
Strbac M, Belic M, Isakovic M, Kojic V, Bijelic G, Popovic I, Radotic M, Dosen S, Markovic M, Farina D, Keller T., J Neural Eng 13(4), 2016
PMID: 27296902
Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.
Strbac M, Isakovic M, Belic M, Popovic I, Simanic I, Farina D, Keller T, Dosen S., IEEE Trans Neural Syst Rehabil Eng 25(11), 2017
PMID: 28600254
A review of invasive and non-invasive sensory feedback in upper limb prostheses.
Svensson P, Wijk U, Bjorkman A, Antfolk C., Expert Rev Med Devices 14(6), 2017
PMID: 28532184
I move, therefore I am: a new theoretical framework to investigate agency and ownership.
Synofzik M, Vosgerau G, Newen A., Conscious Cogn 17(2), 2008
PMID: 18411059
Affective touch modulates the rubber hand illusion.
van Stralen HE, van Zandvoort MJ, Hoppenbrouwers SS, Vissers LM, Kappelle LJ, Dijkerman HC., Cognition 131(1), 2014
PMID: 24487106
Emerging directions in lower limb externally wearable robots for gait rehabilitation and augmentation - a review
Veneman J., Burdet E., van d., Lefeber D.., 2017
The benefits of haptic feedback in telesurgery and other teleoperation systems: a meta-analysis
Weber B., Eichberger C.., 2015
Virtual reality in neurorehabilitation
Weiss P., Kizony R., Feintuch U., Katz N.., 2006
Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
Witteveen HJ, Rietman HS, Veltink PH., Prosthet Orthot Int 39(3), 2014
PMID: 24567348
Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review.
Zou L, Ge C, Wang ZJ, Cretu E, Li X., Sensors (Basel) 17(11), 2017
PMID: 29149080

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 30618706
PubMed | Europe PMC

Suchen in

Google Scholar