Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA)

Spohn M, Edenhart S, Alanjary M, Ziemert N, Wibberg D, Kalinowski J, Niedermeyer THJ, Stegmann E, Wohlleben W (2018)
METALLOMICS 10(5): 722-734.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Spohn, Marius; Edenhart, Simone; Alanjary, Mohammad; Ziemert, Nadine; Wibberg, DanielUniBi; Kalinowski, JörnUniBi; Niedermeyer, Timo H. J.; Stegmann, Evi; Wohlleben, Wolfgang
Abstract / Bemerkung
The mechanism of siderophore-mediated iron supply enhances fitness and survivability of microorganisms under iron limited growth conditions. One class of naturally occurring ionophores is the small aminopolycarboxylic acids (APCAs). Although they are structurally related to the most famous anthropogenic chelating agent, ethylenediaminetetraacetate (EDTA), they have been largely neglected by the scientific community. Here, we demonstrate the detection of APCA gene clusters by a computational screening of a nucleotide database. This genome mining approach enabled the discovery of a yet unknown APCA gene cluster in well-described actinobacterial strains, either known for their potential to produce valuable secondary metabolites (Streptomyces avermitilis) or for their pathogenic lifestyle (Streptomyces scabies, Corynebacterium pseudotuberculosis, Corynebacterium ulcerans and Nocardia brasiliensis). The herein identified gene cluster was shown to encode the biosynthesis of APCA, ethylenediaminesuccinic acid hydroxyarginine (EDHA). Detailed and comparatively performed production and transcriptional profiling of EDHA and its biosynthesis genes showed strict iron-responsive biosynthesis.
Erscheinungsjahr
2018
Zeitschriftentitel
METALLOMICS
Band
10
Ausgabe
5
Seite(n)
722-734
ISSN
1756-5901
eISSN
1756-591X
Page URI
https://pub.uni-bielefeld.de/record/2920691

Zitieren

Spohn M, Edenhart S, Alanjary M, et al. Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). METALLOMICS. 2018;10(5):722-734.
Spohn, M., Edenhart, S., Alanjary, M., Ziemert, N., Wibberg, D., Kalinowski, J., Niedermeyer, T. H. J., et al. (2018). Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). METALLOMICS, 10(5), 722-734. doi:10.1039/c8mt00009c
Spohn, Marius, Edenhart, Simone, Alanjary, Mohammad, Ziemert, Nadine, Wibberg, Daniel, Kalinowski, Jörn, Niedermeyer, Timo H. J., Stegmann, Evi, and Wohlleben, Wolfgang. 2018. “Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA)”. METALLOMICS 10 (5): 722-734.
Spohn, M., Edenhart, S., Alanjary, M., Ziemert, N., Wibberg, D., Kalinowski, J., Niedermeyer, T. H. J., Stegmann, E., and Wohlleben, W. (2018). Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). METALLOMICS 10, 722-734.
Spohn, M., et al., 2018. Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). METALLOMICS, 10(5), p 722-734.
M. Spohn, et al., “Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA)”, METALLOMICS, vol. 10, 2018, pp. 722-734.
Spohn, M., Edenhart, S., Alanjary, M., Ziemert, N., Wibberg, D., Kalinowski, J., Niedermeyer, T.H.J., Stegmann, E., Wohlleben, W.: Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA). METALLOMICS. 10, 722-734 (2018).
Spohn, Marius, Edenhart, Simone, Alanjary, Mohammad, Ziemert, Nadine, Wibberg, Daniel, Kalinowski, Jörn, Niedermeyer, Timo H. J., Stegmann, Evi, and Wohlleben, Wolfgang. “Identification of a novel aminopolycarboxylic acid siderophore gene cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine (EDHA)”. METALLOMICS 10.5 (2018): 722-734.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Draft Genome Sequence of the Novonestmycin-Producing Strain Streptomyces sp. Z26, Isolated from Potato Rhizosphere in Morocco.
Buchmann A, Cano-Prieto C, Nafis A, Barakate M, Baz M, Hassani L, Ortlieb N, Niedermeyer THJ, Gross H., Microbiol Resour Announc 8(1), 2019
PMID: 30637404
Draft Genome Sequence of the Xanthocidin-Producing Strain Streptomyces sp. AcE210, Isolated from a Root Nodule of Alnus glutinosa (L.).
Ortlieb N, Keilhofer N, Schrey SD, Gross H, Niedermeyer THJ., Microbiol Resour Announc 7(14), 2018
PMID: 30533708

73 References

Daten bereitgestellt von Europe PubMed Central.

Iron and microbial infection.
Schaible UE, Kaufmann SH., Nat. Rev. Microbiol. 2(12), 2004
PMID: 15550940
The role of iron in the immune response to bacterial infection.
Cherayil BJ., Immunol. Res. 50(1), 2011
PMID: 21161695
Siderophore-based iron acquisition and pathogen control.
Miethke M, Marahiel MA., Microbiol. Mol. Biol. Rev. 71(3), 2007
PMID: 17804665
Chemistry and biology of siderophores.
Hider RC, Kong X., Nat Prod Rep 27(5), 2010
PMID: 20376388
Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria.
Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM., Science 305(5690), 2004
PMID: 15361623
The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor.
Kallifidas D, Pascoe B, Owen GA, Strain-Damerell CM, Hong HJ, Paget MS., J. Bacteriol. 192(2), 2009
PMID: 19915027
Genetics and assembly line enzymology of siderophore biosynthesis in bacteria.
Crosa JH, Walsh CT., Microbiol. Mol. Biol. Rev. 66(2), 2002
PMID: 12040125
Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen.
Aagaard A, Brzezinski P., FEBS Lett. 494(3), 2001
PMID: 11311232
The role of iron and reactive oxygen species in cell death.
Dixon SJ, Stockwell BR., Nat. Chem. Biol. 10(1), 2014
PMID: 24346035
A role for the DtxR family of metalloregulators in gram-positive pathogenesis.
Merchant AT, Spatafora GA., Mol Oral Microbiol 29(1), 2013
PMID: 24034418
Iron and metal regulation in bacteria.
Hantke K., Curr. Opin. Microbiol. 4(2), 2001
PMID: 11282473
Functional specialization within the Fur family of metalloregulators.
Lee JW, Helmann JD., Biometals 20(3-4), 2007
PMID: 17216355
A Review on Iron Chelators in Treatment of Iron Overload Syndromes.
Mobarra N, Shanaki M, Ehteram H, Nasiri H, Sahmani M, Saeidi M, Goudarzi M, Pourkarim H, Azad M., Int J Hematol Oncol Stem Cell Res 10(4), 2016
PMID: 27928480

Neal, Inorg. Chem. 7(), 1968
Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator.
Schowanek D, Feijtel TC, Perkins CM, Hartman FA, Federle TW, Larson RJ., Chemosphere 34(11), 1997
PMID: 9192467
Biodegradabilities of ethylenediamine-N,N'-disuccinic acid (EDDS) and other chelating agents.
Takahashi R, Fujimoto N, Suzuki M, Endo T., Biosci. Biotechnol. Biochem. 61(11), 1997
PMID: 9404083
Production by actinomycetes of (S,S)-N,N'-ethylenediamine-disuccinic acid, an inhibitor of phospholipase C.
Nishikiori T, Okuyama A, Naganawa H, Takita T, Hamada M, Takeuchi T, Aoyagi T, Umezawa H., J. Antibiot. 37(4), 1984
PMID: 6327594
Discovery, purification and characterization of the angiotensin converting enzyme inhibitor, L-681,176, produced by Streptomyces sp. MA 5143a.
Huang L, Rowin G, Dunn J, Sykes R, Dobna R, Mayles BA, Gross DM, Burg RW., J. Antibiot. 37(5), 1984
PMID: 6203886
Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17.
Spohn M, Kirchner N, Kulik A, Jochim A, Wolf F, Muenzer P, Borst O, Gross H, Wohlleben W, Stegmann E., Antimicrob. Agents Chemother. 58(10), 2014
PMID: 25114137
Prokka: rapid prokaryotic genome annotation.
Seemann T., Bioinformatics 30(14), 2014
PMID: 24642063
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD., Nucleic Acids Res. 44(D1), 2015
PMID: 26553804
The TIGRFAMs database of protein families.
Haft DH, Selengut JD, White O., Nucleic Acids Res. 31(1), 2003
PMID: 12520025
HMMER web server: interactive sequence similarity searching.
Finn RD, Clements J, Eddy SR., Nucleic Acids Res. 39(Web Server issue), 2011
PMID: 21593126
PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments.
Suyama M, Torrents D, Bork P., Nucleic Acids Res. 34(Web Server issue), 2006
PMID: 16845082
trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T., Bioinformatics 25(15), 2009
PMID: 19505945
ETE: a python Environment for Tree Exploration.
Huerta-Cepas J, Dopazo J, Gabaldon T., BMC Bioinformatics 11(), 2010
PMID: 20070885
Genome sequence-based species delimitation with confidence intervals and improved distance functions.
Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M., BMC Bioinformatics 14(), 2013
PMID: 23432962
Environmental fate and microbial degradation of aminopolycarboxylic acids.
Bucheli-Witschel M, Egli T., FEMS Microbiol. Rev. 25(1), 2001
PMID: 11152941
Detecting sequence homology at the gene cluster level with MultiGeneBlast.
Medema MH, Takano E, Breitling R., Mol. Biol. Evol. 30(5), 2013
PMID: 23412913
Functional Identification of Putrescine C- and N-Hydroxylases.
Li B, Lowe-Power T, Kurihara S, Gonzales S, Naidoo J, MacMillan JB, Allen C, Michael AJ., ACS Chem. Biol. 11(10), 2016
PMID: 27541336
Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions.
Bignell DR, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R., Mol. Plant Microbe Interact. 23(2), 2010
PMID: 20064060
Progression of 'OMICS' methodologies for understanding the pathogenicity of Corynebacterium pseudotuberculosis: the Brazilian experience.
Dorella FA, Gala-Garcia A, Pinto AC, Sarrouh B, Antunes CA, Ribeiro D, Aburjaile FF, Fiaux KK, Guimaraes LC, Seyffert N, El-Aouar RA, Silva R, Hassan SS, Castro TL, Marques WS, Ramos R, Carneiro A, de Sa P, Miyoshi A, Azevedo V, Silva A., Comput Struct Biotechnol J 6(), 2013
PMID: 24688721
Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites.
Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M., Proc. Natl. Acad. Sci. U.S.A. 98(21), 2001
PMID: 11572948
Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis.
Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S., Nat. Biotechnol. 21(5), 2003
PMID: 12692562
Computational approaches to natural product discovery.
Medema MH, Fischbach MA., Nat. Chem. Biol. 11(9), 2015
PMID: 26284671

Smith, J. Am. Chem. Soc. 107(), 1985
Purification and chemical characterization of staphyloferrin B, a hydrophilic siderophore from staphylococci.
Drechsel H, Freund S, Nicholson G, Haag H, Jung O, Zahner H, Jung G., Biometals 6(3), 1993
PMID: 8400765
Histargin, a new inhibitor of carboxypeptidase B, produced by actinomycetes.
Umezawa H, Aoyagi T, Ogawa K, Iinuma H, Naganawa H, Hamada M, Takeuchi T., J. Antibiot. 37(9), 1984
PMID: 6548739
The structure of histargin.
Ogawa K, Naganawa H, Iinuma H, Aoyagi T, Umezawa H., J. Antibiot. 37(9), 1984
PMID: 6548740
High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus.
Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z., Nature 338(6213), 1989
PMID: 2493587

Zwicker, J. Ind. Microbiol. Biotechnol. 19(), 1997
Searching for patterns in genomic data.
Dsouza M, Larsen N, Overbeek R., Trends Genet. 13(12), 1997
PMID: 9433140
Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145.
Barona-Gomez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL., J. Am. Chem. Soc. 126(50), 2004
PMID: 15600304
The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins.
Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, Loria R., Microbiology (Reading, Engl.) 157(Pt 9), 2011
PMID: 21757492

Kołodyńska, 2011
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29667664
PubMed | Europe PMC

Suchen in

Google Scholar