On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2

Heine T, Zimmerling J, Ballmann A, Kleeberg SB, Rückert C, Busche T, Winkler A, Kalinowski J, Poetsch A, Scholtissek A, Oelschlaegel M, et al. (2018)
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 84(9): 16.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Among bacteria, only a single styrene-specific degradation pathway has been reported so far. It comprises the activity of styrene monooxygenase, styrene oxide isomerase, and phenylacetaldehyde dehydrogenase, yielding phenylacetic acid as the central metabolite. The alternative route comprises ring-hydroxylating enzymes and yields vinyl catechol as central metabolite, which undergoes meta-cleavage. This was reported to be unspecific and also allows the degradation of benzene derivatives. However, some bacteria had been described to degrade styrene but do not employ one of those routes or only parts of them. Here, we describe a novel "hybrid" degradation pathway for styrene located on a plasmid of foreign origin. As putatively also unspecific, it allows metabolizing chemically analogous compounds (e.g., halogenated and/or alkylated styrene derivatives). Gordonia rubripertincta CWB2 was isolated with styrene as the sole source of carbon and energy. It employs an assembled route of the styrene side-chain degradation and isoprene degradation pathways that also funnels into phenylacetic acid as the central metabolite. Metabolites, enzyme activity, genome, transcriptome, and proteome data reinforce this observation and allow us to understand this biotechnologically relevant pathway, which can be used for the production of ibuprofen. IMPORTANCE The degradation of xenobiotics by bacteria is not only important for bioremediation but also because the involved enzymes are potential catalysts in biotechnological applications. This study reveals a novel degradation pathway for the hazardous organic compound styrene in Gordonia rubripertincta CWB2. This study provides an impressive illustration of horizontal gene transfer, which enables novel metabolic capabilities. This study presents glutathione-dependent styrene metabolization in an (actino-) bacterium. Further, the genomic background of the ability of strain CWB2 to produce ibuprofen is demonstrated.
Erscheinungsjahr
Zeitschriftentitel
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Band
84
Ausgabe
9
Art.-Nr.
16
ISSN
eISSN
PUB-ID

Zitieren

Heine T, Zimmerling J, Ballmann A, et al. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 2018;84(9): 16.
Heine, T., Zimmerling, J., Ballmann, A., Kleeberg, S. B., Rückert, C., Busche, T., Winkler, A., et al. (2018). On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 84(9), 16. doi:10.1128/AEM.00154-18
Heine, T., Zimmerling, J., Ballmann, A., Kleeberg, S. B., Rückert, C., Busche, T., Winkler, A., Kalinowski, J., Poetsch, A., Scholtissek, A., et al. (2018). On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 84:16.
Heine, T., et al., 2018. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 84(9): 16.
T. Heine, et al., “On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2”, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 84, 2018, : 16.
Heine, T., Zimmerling, J., Ballmann, A., Kleeberg, S.B., Rückert, C., Busche, T., Winkler, A., Kalinowski, J., Poetsch, A., Scholtissek, A., Oelschlaegel, M., Schmidt, G., Tischler, D.: On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 84, : 16 (2018).
Heine, Thomas, Zimmerling, Juliane, Ballmann, Anne, Kleeberg, Sebastian Bruno, Rückert, Christian, Busche, Tobias, Winkler, Anika, Kalinowski, Jörn, Poetsch, Ansgar, Scholtissek, Anika, Oelschlaegel, Michel, Schmidt, Gert, and Tischler, Dirk. “On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2”. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 84.9 (2018): 16.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

VpStyA1/VpStyA2B of Variovorax paradoxus EPS: An Aryl Alkyl Sulfoxidase Rather than a Styrene Epoxidizing Monooxygenase.
Tischler D, Schwabe R, Siegel L, Joffroy K, Kaschabek SR, Scholtissek A, Heine T., Molecules 23(4), 2018
PMID: 29614810
Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities.
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D., Biology (Basel) 7(3), 2018
PMID: 30072664
Poplar phyllosphere harbors disparate isoprene-degrading bacteria.
Crombie AT, Larke-Mejia NL, Emery H, Dawson R, Pratscher J, Murphy GP, McGenity TJ, Murrell JC., Proc Natl Acad Sci U S A 115(51), 2018
PMID: 30498029

108 References

Daten bereitgestellt von Europe PubMed Central.

Review of the toxicology of styrene.
Bond JA., Crit. Rev. Toxicol. 19(3), 1989
PMID: 2653733
Styrene toxicity: an ecotoxicological assessment.
Gibbs BF, Mulligan CN., Ecotoxicol. Environ. Saf. 38(3), 1997
PMID: 9469867

Tischler D., 2015
Handbook on biodegradation and biological treatment of hazardous organic compounds
van MH, Keuning S, Janssen DB, Janssen JP, Oosterhaven J., 2010
Microbial styrene degradation: from basics to biotechnology
Tischler D, Kaschabek SR., 2012
Structure and biochemistry of phenylacetaldehyde dehydrogenase from the Pseudomonas putida S12 styrene catabolic pathway.
Crabo AG, Singh B, Nguyen T, Emami S, Gassner GT, Sazinsky MH., Arch. Biochem. Biophys. 616(), 2017
PMID: 28153386
Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G., Proc. Natl. Acad. Sci. U.S.A. 107(32), 2010
PMID: 20660314
Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism.
Itoh N, Yoshida K, Okada K., Biosci. Biotechnol. Biochem. 60(11), 1996
PMID: 8987859
Characterization of Styrene Oxide Isomerase, a Key Enzyme of Styrene and Styrene Oxide Metabolism in Corynehacterium sp.
Itch N, Hayashi K, Okada K, Ito T, Mizuguchi N., Biosci. Biotechnol. Biochem. 61(12), 1997
PMID: 27396882
Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10.
Itoh N, Morihama R, Wang J, Okada K, Mizuguchi N., Appl. Environ. Microbiol. 63(10), 1997
PMID: 9327541
Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST.
Marconi AM, Beltrametti F, Bestetti G, Solinas F, Ruzzi M, Galli E, Zennaro E., Appl. Environ. Microbiol. 62(1), 1996
PMID: 8572689
Biology of the metabolically diverse genus Gordonia.
Arenskotter M, Broker D, Steinbuchel A., Appl. Environ. Microbiol. 70(6), 2004
PMID: 15184112
Styrene oxide isomerase of Sphingopyxis sp. Kp5.2.
Oelschlagel M, Zimmerling J, Schlomann M, Tischler D., Microbiology (Reading, Engl.) 160(Pt 11), 2014
PMID: 25187627
Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria.
Oelschlagel M, Kaschabek SR, Zimmerling J, Schlomann M, Tischler D., Biotechnol Rep (Amst) 6(), 2015
PMID: 28626693
Identification and characterization of a FAD-dependent putrescine N-hydroxylase (GorA) from Gordonia rubripertincta CWB2
Esuola CO, Babalola OO, Heine T, Schwabe R, Schlömann M, Tischler D., 2016
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Identification and characterisation of isoprene-degrading bacteria in an estuarine environment.
Johnston A, Crombie AT, El Khawand M, Sims L, Whited GM, McGenity TJ, Colin Murrell J., Environ. Microbiol. 19(9), 2017
PMID: 28654185
Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle.
Crombie AT, Khawand ME, Rhodius VA, Fengler KA, Miller MC, Whited GM, McGenity TJ, Murrell JC., Environ. Microbiol. 17(9), 2015
PMID: 25727256
Functional overlap of the Arabidopsis leaf and root microbiota.
Bai Y, Muller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Munch PC, Spaepen S, Remus-Emsermann M, Huttel B, McHardy AC, Vorholt JA, Schulze-Lefert P., Nature 528(7582), 2015
PMID: 26633631
Bacterial transcriptional regulators for degradation pathways of aromatic compounds.
Tropel D, van der Meer JR., Microbiol. Mol. Biol. Rev. 68(3), 2004
PMID: 15353566
Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5.
Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N., J. Bacteriol. 185(24), 2003
PMID: 14645271
Cloning, expression, and site-directed mutagenesis of the propene monooxygenase genes from Mycobacterium sp. strain M156.
Chan Kwo Chion CK, Askew SE, Leak DJ., Appl. Environ. Microbiol. 71(4), 2005
PMID: 15812019
Reconstitution of active mycobacterial binuclear iron monooxygenase complex in Escherichia coli.
Furuya T, Hayashi M, Kino K., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892738
Metabolic versatility of Gram-positive microbial isolates from contaminated river sediments.
Narancic T, Djokic L, Kenny ST, O'Connor KE, Radulovic V, Nikodinovic-Runic J, Vasiljevic B., J. Hazard. Mater. 215-216(), 2012
PMID: 22421345
Degradation of styrene by white-rot fungi
Braun-Lüllemann A, Majcherczyk A, Hüttermann A., 1997
Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.
Gaszczak A, Bartelmus G, Gren I., Appl. Microbiol. Biotechnol. 93(2), 2011
PMID: 21833566
Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater
Bredholt H, Josefsen K, Vatland A, Bruheim P, Eimhjellen K., 1998
Surface-active lipids in rhodococci.
Lang S, Philp JC., Antonie Van Leeuwenhoek 74(1-3), 1998
PMID: 10068789
Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains.
Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E., FEMS Microbiol. Ecol. 63(2), 2007
PMID: 18070077
Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3.
O'Connor K, Buckley CM, Hartmans S, Dobson AD., Appl. Environ. Microbiol. 61(2), 1995
PMID: 7574594
Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2.
Velasco A, Alonso S, Garcia JL, Perera J, Diaz E., J. Bacteriol. 180(5), 1998
PMID: 9495743
Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST.
Santos PM, Blatny JM, Di Bartolo I, Valla S, Zennaro E., Appl. Environ. Microbiol. 66(4), 2000
PMID: 10742204
Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3.
O'Leary ND, O'Connor KE, Duetz W, Dobson AD., Microbiology (Reading, Engl.) 147(Pt 4), 2001
PMID: 11283293
Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding.
Leoni L, Ascenzi P, Bocedi A, Rampioni G, Castellini L, Zennaro E., Biochem. Biophys. Res. Commun. 303(3), 2003
PMID: 12670500
Dual role of response regulator StyR in styrene catabolism regulation.
Leoni L, Rampioni G, Di Stefano V, Zennaro E., Appl. Environ. Microbiol. 71(9), 2005
PMID: 16151132
Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1.
Patrauchan MA, Florizone C, Eapen S, Gomez-Gil L, Sethuraman B, Fukuda M, Davies J, Mohn WW, Eltis LD., J. Bacteriol. 190(1), 2007
PMID: 17965160
Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions.
Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE., Microbiology (Reading, Engl.) 155(Pt 10), 2009
PMID: 19608612
Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding.
Riedel A, Heine T, Westphal AH, Conrad C, Rathsack P, van Berkel WJ, Tischler D., AMB Express 5(1), 2015
PMID: 26054733
Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
Otto K, Hofstetter K, Rothlisberger M, Witholt B, Schmid A., J. Bacteriol. 186(16), 2004
PMID: 15292130
Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.
Cheng L, Yin S, Chen M, Sun B, Hao S, Wang C., Curr. Microbiol. 73(2), 2016
PMID: 27154464
Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1
Han JH, Park MS, Bae JW, Lee EY, Yoon YJ, Lee S-G, Park S., 2006
Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme.
Oelschlagel M, Groning JA, Tischler D, Kaschabek SR, Schlomann M., Appl. Environ. Microbiol. 78(12), 2012
PMID: 22504818
Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing.
El Khawand M, Crombie AT, Johnston A, Vavlline DV, McAuliffe JC, Latone JA, Primak YA, Lee SK, Whited GM, McGenity TJ, Murrell JC., Environ. Microbiol. 18(8), 2016
PMID: 27102583
Characterization of marine isoprene-degrading communities.
Alvarez LA, Exton DA, Timmis KN, Suggett DJ, McGenity TJ., Environ. Microbiol. 11(12), 2009
PMID: 19807779
A glutathione S-transferase with activity towards cis-1, 2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45.
van Hylckama Vlieg JE, Kingma J, van den Wijngaard AJ, Janssen DB., Appl. Environ. Microbiol. 64(8), 1998
PMID: 9687433
Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45.
van Hylckama Vlieg JE, Leemhuis H, Spelberg JH, Janssen DB., J. Bacteriol. 182(7), 2000
PMID: 10715003
Bacterial degradation of isoprene in the terrestrial environment
El M., 2014
Glutathione in bacteria.
Smirnova GV, Oktyabrsky ON., Biochemistry Mosc. 70(11), 2005
PMID: 16336178
Characterization of Aldehyde Dehydrogenases Applying an Enzyme Assay with In Situ Formation of Phenylacetaldehydes.
Zimmerling J, Tischler D, Großmann C, Schlomann M, Oelschlagel M., Appl. Biochem. Biotechnol. 182(3), 2017
PMID: 28062952
Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon.
Fall R, Copley SD., Environ. Microbiol. 2(2), 2000
PMID: 11220299
Glutathione transferases in bacteria.
Allocati N, Federici L, Masulli M, Di Ilio C., FEBS J. 276(1), 2009
PMID: 19016852
Occurrence of glutathione in bacteria.
Fahey RC, Brown WC, Adams WB, Worsham MB., J. Bacteriol. 133(3), 1978
PMID: 417060
Unusual production of glutathione in Actinobacteria.
Johnson T, Newton GL, Fahey RC, Rawat M., Arch. Microbiol. 191(1), 2008
PMID: 18719892
Distribution of glutathione transferases in Gram-positive bacteria and Archaea.
Allocati N, Federici L, Masulli M, Di Ilio C., Biochimie 94(3), 2011
PMID: 21945597
Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds.
Navarro-Llorens JM, Patrauchan MA, Stewart GR, Davies JE, Eltis LD, Mohn WW., J. Bacteriol. 187(13), 2005
PMID: 15968060
Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum.
Chen X, Kohl TA, Ruckert C, Rodionov DA, Li LH, Ding JY, Kalinowski J, Liu SJ., Appl. Environ. Microbiol. 78(16), 2012
PMID: 22685150
Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes.
van Hylckama Vlieg JE, Janssen DB., J. Biotechnol. 85(2), 2001
PMID: 11165358
Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad.
Dorn E, Hellwig M, Reineke W, Knackmuss HJ., Arch. Microbiol. 99(1), 1974
PMID: 4852581
Surface-active agents from two bacillus species.
Cooper DG, Goldenberg BG., Appl. Environ. Microbiol. 53(2), 1987
PMID: 16347271
Consed: a graphical tool for sequence finishing.
Gordon D, Abajian C, Green P., Genome Res. 8(3), 1998
PMID: 9521923
Consed: a graphical editor for next-generation sequencing.
Gordon D, Green P., Bioinformatics 29(22), 2013
PMID: 23995391
Prokka: rapid prokaryotic genome annotation.
Seemann T., Bioinformatics 30(14), 2014
PMID: 24642063
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets.
Bertelli C, Laird MR, Williams KP; Simon Fraser University Research Computing Group, Lau BY, Hoad G, Winsor GL, Brinkman FSL., Nucleic Acids Res. 45(W1), 2017
PMID: 28472413
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
ReadXplorer 2-detailed read mapping analysis and visualization from one single source.
Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S, Weisshaar B, Zimmermann T, Goesmann A., Bioinformatics 32(24), 2016
PMID: 27540267
In-gel digestion for mass spectrometric characterization of proteins and proteomes.
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M., Nat Protoc 1(6), 2006
PMID: 17406544
ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells.
Al-Furoukh N, Ianni A, Nolte H, Holper S, Kruger M, Wanrooij S, Braun T., Biochim. Biophys. Acta 1853(10 Pt A), 2015
PMID: 26142927
Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation.
Thakur SS, Geiger T, Chatterjee B, Bandilla P, Frohlich F, Cox J, Mann M., Mol. Cell Proteomics 10(8), 2011
PMID: 21586754
Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M., Mol. Cell Proteomics 13(9), 2014
PMID: 24942700
OPTIMIZER: a web server for optimizing the codon usage of DNA sequences.
Puigbo P, Guzman E, Romeu A, Garcia-Vallve S., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17439967

AUTHOR UNKNOWN, 2001
Indigo formation by microorganisms expressing styrene monooxygenase activity.
O'Connor KE, Dobson AD, Hartmans S., Appl. Environ. Microbiol. 63(11), 1997
PMID: 9361415
Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259.
Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA., Appl. Environ. Microbiol. 60(4), 1994
PMID: 8017910
Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP.
Tischler D, Eulberg D, Lakner S, Kaschabek SR, van Berkel WJ, Schlomann M., J. Bacteriol. 191(15), 2009
PMID: 19482928

Dawson RMC., 1986
Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2.
Alonso S, Bartolome-Martin D, del Alamo M, Diaz E, Garcia JL, Perera J., Gene 319(), 2003
PMID: 14597173
Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2.
Kendall SL, Burgess P, Balhana R, Withers M, Ten Bokum A, Lott JS, Gao C, Uhia-Castro I, Stoker NG., Microbiology (Reading, Engl.) 156(Pt 5), 2010
PMID: 20167624
Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST.
Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E., Appl. Environ. Microbiol. 63(6), 1997
PMID: 9172343
Analysis of the structure and function of YfcG from Escherichia coli reveals an efficient and unique disulfide bond reductase.
Wadington MC, Ladner JE, Stourman NV, Harp JM, Armstrong RN., Biochemistry 48(28), 2009
PMID: 19537707
Function and X-ray crystal structure of Escherichia coli YfdE.
Mullins EA, Sullivan KL, Kappock TJ., PLoS ONE 8(7), 2013
PMID: 23935849
pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi.
Reverchon S, Nasser W, Robert-Baudouy J., Mol. Microbiol. 11(6), 1994
PMID: 8022282

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29475871
PubMed | Europe PMC

Suchen in

Google Scholar