A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances

Xin G, Lin H-C, Smith J, Cebe O, Mistry M (2018)
In: IEEE/RSJ Int. Conf. on Robotics and Automation.

Konferenzbeitrag | Englisch
 
Download
OA 3.01 MB
Autor*in
Xin, Guiyang; Lin, Hsiu-Chin; Smith, Joshua; Cebe, Oguzhan; Mistry, Michael
Einrichtung
Abstract / Bemerkung
Legged robots have many potential applications in real-world scenarios where the tasks are too dangerous for humans, and compliance is needed to protect the system against external disturbances and impacts. In this paper, we propose a model-based controller for hierarchical tasks of legged systems subject to external disturbance. The control framework is based on projected inverse dynamics controller, such that the control law is decomposed into two orthogonal subspaces, i.e., the constrained and the unconstrained subspaces. The unconstrained component controls multiple desired tasks with impedance responses. The constrained space controller maintains the contact subject to unknown external disturbances, without the use of any force/torque sensing at the contact points. By explicitly modelling the external force, our controller is robust to external disturbances and errors arising from incorrect dynamic model information. The main contributions of this paper include (1) incorporating an impedance controller to control external disturbances and allow impedance shaping to adjust the behaviour of the motion under external disturbances, (2) optimising contact forces within the constrained subspace that also takes into account the external disturbances without using force/torque sensors at the contact locations. The techniques are evaluated on the ANYmal quadruped platform under a variety of scenarios.
Erscheinungsjahr
2018
Titel des Konferenzbandes
IEEE/RSJ Int. Conf. on Robotics and Automation
Page URI
https://pub.uni-bielefeld.de/record/2918923

Zitieren

Xin G, Lin H-C, Smith J, Cebe O, Mistry M. A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances. In: IEEE/RSJ Int. Conf. on Robotics and Automation. 2018.
Xin, G., Lin, H. - C., Smith, J., Cebe, O., & Mistry, M. (2018). A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances. IEEE/RSJ Int. Conf. on Robotics and Automation
Xin, G., Lin, H. - C., Smith, J., Cebe, O., and Mistry, M. (2018). “A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances” in IEEE/RSJ Int. Conf. on Robotics and Automation.
Xin, G., et al., 2018. A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances. In IEEE/RSJ Int. Conf. on Robotics and Automation.
G. Xin, et al., “A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances”, IEEE/RSJ Int. Conf. on Robotics and Automation, 2018.
Xin, G., Lin, H.-C., Smith, J., Cebe, O., Mistry, M.: A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances. IEEE/RSJ Int. Conf. on Robotics and Automation. (2018).
Xin, Guiyang, Lin, Hsiu-Chin, Smith, Joshua, Cebe, Oguzhan, and Mistry, Michael. “A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances”. IEEE/RSJ Int. Conf. on Robotics and Automation. 2018.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:52:41Z
MD5 Prüfsumme
173c337edcdf2b194301b2e43ba3f69c

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar