Motor expertise facilitates the accuracy of state extrapolation in perception

Ludolph N, Plöger J, Giese MA, Ilg W (2017)
PLOS ONE 12(11): e0187666.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ludolph, Nicolas; Plöger, Jannis; Giese, Martin A.; Ilg, Winfried
Einrichtung
Erscheinungsjahr
2017
Zeitschriftentitel
PLOS ONE
Band
12
Ausgabe
11
Art.-Nr.
e0187666
ISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2918908

Zitieren

Ludolph N, Plöger J, Giese MA, Ilg W. Motor expertise facilitates the accuracy of state extrapolation in perception. PLOS ONE. 2017;12(11): e0187666.
Ludolph, N., Plöger, J., Giese, M. A., & Ilg, W. (2017). Motor expertise facilitates the accuracy of state extrapolation in perception. PLOS ONE, 12(11), e0187666. https://doi.org/10.1371/journal.pone.0187666
Ludolph, Nicolas, Plöger, Jannis, Giese, Martin A., and Ilg, Winfried. 2017. “Motor expertise facilitates the accuracy of state extrapolation in perception”. PLOS ONE 12 (11): e0187666.
Ludolph, N., Plöger, J., Giese, M. A., and Ilg, W. (2017). Motor expertise facilitates the accuracy of state extrapolation in perception. PLOS ONE 12:e0187666.
Ludolph, N., et al., 2017. Motor expertise facilitates the accuracy of state extrapolation in perception. PLOS ONE, 12(11): e0187666.
N. Ludolph, et al., “Motor expertise facilitates the accuracy of state extrapolation in perception”, PLOS ONE, vol. 12, 2017, : e0187666.
Ludolph, N., Plöger, J., Giese, M.A., Ilg, W.: Motor expertise facilitates the accuracy of state extrapolation in perception. PLOS ONE. 12, : e0187666 (2017).
Ludolph, Nicolas, Plöger, Jannis, Giese, Martin A., and Ilg, Winfried. “Motor expertise facilitates the accuracy of state extrapolation in perception”. PLOS ONE 12.11 (2017): e0187666.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

40 References

Daten bereitgestellt von Europe PubMed Central.

Computational mechanisms of sensorimotor control.
Franklin DW, Wolpert DM., Neuron 72(3), 2011
PMID: 22078503
Principles of sensorimotor learning
DM, Nature Reviews Neuroscience 12(), 2011
Inside the brain of an elite athlete: the neural processes that support high achievement in sports.
Yarrow K, Brown P, Krakauer JW., Nat. Rev. Neurosci. 10(8), 2009
PMID: 19571792
Visuo-motor coordination and internal models for object interception.
Zago M, McIntyre J, Senot P, Lacquaniti F., Exp Brain Res 192(4), 2009
PMID: 19139857
Motor learning affects visual movement perception.
Engel A, Burke M, Fiehler K, Bien S, Rosler F., Eur. J. Neurosci. 27(9), 2008
PMID: 18445220
The cerebellum and event timing.
Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J., Ann. N. Y. Acad. Sci. 978(), 2002
PMID: 12582062
Prediction of external events with our motor system: towards a new framework.
Schubotz RI., Trends Cogn. Sci. (Regul. Ed.) 11(5), 2007
PMID: 17383218
The cerebellum predicts the timing of perceptual events.
O'Reilly JX, Mesulam MM, Nobre AC., J. Neurosci. 28(9), 2008
PMID: 18305258
The cerebellum optimizes perceptual predictions about external sensory events.
Roth MJ, Synofzik M, Lindner A., Curr. Biol. 23(10), 2013
PMID: 23664970
Hand interception of occluded motion in humans: a test of model-based vs. on-line control.
La Scaleia B, Zago M, Lacquaniti F., J. Neurophysiol. 114(3), 2015
PMID: 26133803
Manipulating objects with internal degrees of freedom: evidence for model-based control.
Dingwell JB, Mah CD, Mussa-Ivaldi FA., J. Neurophysiol. 88(1), 2002
PMID: 12091548
Optimal control predicts human performance on objects with internal degrees of freedom.
Nagengast AJ, Braun DA, Wolpert DM., PLoS Comput. Biol. 5(6), 2009
PMID: 19557193
Energy margins in dynamic object manipulation.
Hasson CJ, Shen T, Sternad D., J. Neurophysiol. 108(5), 2012
PMID: 22592302
Forward models in visuomotor control.
Mehta B, Schaal S., J. Neurophysiol. 88(2), 2002
PMID: 12163543
Neuronlike adaptive elements that can solve difficult learning control problems
AG, IEEE Transactions on Systems, Man, and Cybernetics 13(), 1983
Cerebellar regions involved in adaptation to force field and visuomotor perturbation.
Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, Timmann D., J. Neurophysiol. 107(1), 2011
PMID: 21975446
Predicting point-light actions in real-time.
Graf M, Reitzner B, Corves C, Casile A, Giese M, Prinz W., Neuroimage 36 Suppl 2(), 2007
PMID: 17499167
Action anticipation and motor resonance in elite basketball players.
Aglioti SM, Cesari P, Romani M, Urgesi C., Nat. Neurosci. 11(9), 2008
PMID: 19160510
The Psychophysics Toolbox.
Brainard DH., Spat Vis 10(4), 1997
PMID: 9176952

AUTHOR UNKNOWN, 0
The emulation theory of representation: Motor control, imagery, and perception
R, Behav. Brain Sci 27(), 2004
Perception and Action Planning
W, European Journal of Cognitive Psychology 9(), 1997
Nonvisual motor training influences biological motion perception.
Casile A, Giese MA., Curr. Biol. 16(1), 2006
PMID: 16401424
Error correction, sensory prediction, and adaptation in motor control.
Shadmehr R, Smith MA, Krakauer JW., Annu. Rev. Neurosci. 33(), 2010
PMID: 20367317
Adaptation of hand tracking to rotated visual coordinates
C, Perception & Psychophysics 17(), 1975
The cerebellum updates predictions about the visual consequences of one's behavior.
Synofzik M, Lindner A, Thier P., Curr. Biol. 18(11), 2008
PMID: 18514520
Seeing or doing? Influence of visual and motor familiarity in action observation.
Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P., Curr. Biol. 16(19), 2006
PMID: 17027486
An intact action-perception coupling depends on the integrity of the cerebellum.
Christensen A, Giese MA, Sultan F, Mueller OM, Goericke SL, Ilg W, Timmann D., J. Neurosci. 34(19), 2014
PMID: 24806697
The cerebellum is involved in predicting the sensory consequences of action.
Blakemore SJ, Frith CD, Wolpert DM., Neuroreport 12(9), 2001
PMID: 11435916
The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.
Deluca C, Golzar A, Santandrea E, Lo Gerfo E, Estocinova J, Moretto G, Fiaschi A, Panzeri M, Mariotti C, Tinazzi M, Chelazzi L., Cortex 58(), 2014
PMID: 24959702
Maintaining internal representations: the role of the human superior parietal lobe.
Wolpert DM, Goodbody SJ, Husain M., Nat. Neurosci. 1(6), 1998
PMID: 10196553
Forward modeling allows feedback control for fast reaching movements.
Desmurget M, Grafton S., Trends Cogn. Sci. (Regul. Ed.) 4(11), 2000
PMID: 11058820
Functionally specific changes in resting-state sensorimotor networks after motor learning.
Vahdat S, Darainy M, Milner TE, Ostry DJ., J. Neurosci. 31(47), 2011
PMID: 22114261
Structure of plasticity in human sensory and motor networks due to perceptual learning.
Vahdat S, Darainy M, Ostry DJ., J. Neurosci. 34(7), 2014
PMID: 24523536
Action prediction in the cerebellum and in the parietal lobe.
Blakemore SJ, Sirigu A., Exp Brain Res 153(2), 2003
PMID: 12955381
Virtual reality in neuroscience research and therapy.
Bohil CJ, Alicea B, Biocca FA., Nat. Rev. Neurosci. 12(12), 2011
PMID: 22048061
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29107970
PubMed | Europe PMC

Suchen in

Google Scholar