Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics

Ludolph N, Giese MA, Ilg W (2017)
Scientific Reports 7(1): 13191.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ludolph, Nicolas; Giese, Martin A.; Ilg, Winfried
Einrichtung
Erscheinungsjahr
2017
Zeitschriftentitel
Scientific Reports
Band
7
Ausgabe
1
Art.-Nr.
13191
ISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2918905

Zitieren

Ludolph N, Giese MA, Ilg W. Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics. Scientific Reports. 2017;7(1): 13191.
Ludolph, N., Giese, M. A., & Ilg, W. (2017). Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics. Scientific Reports, 7(1), 13191. doi:10.1038/s41598-017-13510-0
Ludolph, N., Giese, M. A., and Ilg, W. (2017). Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics. Scientific Reports 7:13191.
Ludolph, N., Giese, M.A., & Ilg, W., 2017. Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics. Scientific Reports, 7(1): 13191.
N. Ludolph, M.A. Giese, and W. Ilg, “Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics”, Scientific Reports, vol. 7, 2017, : 13191.
Ludolph, N., Giese, M.A., Ilg, W.: Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics. Scientific Reports. 7, : 13191 (2017).
Ludolph, Nicolas, Giese, Martin A., and Ilg, Winfried. “Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics”. Scientific Reports 7.1 (2017): 13191.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Motor expertise facilitates the accuracy of state extrapolation in perception.
Ludolph N, Plöger J, Giese MA, Ilg W., PLoS One 12(11), 2017
PMID: 29107970

67 References

Daten bereitgestellt von Europe PubMed Central.

Adaptation of hand tracking to rotated visual coordinates
Prablanc C, Tzavaras A, Jeannerod M., 1975
Error correction, sensory prediction, and adaptation in motor control.
Shadmehr R, Smith MA, Krakauer JW., Annu. Rev. Neurosci. 33(), 2010
PMID: 20367317
Adaptive representation of dynamics during learning of a motor task.
Shadmehr R, Mussa-Ivaldi FA., J. Neurosci. 14(5 Pt 2), 1994
PMID: 8182467
Why can't you tickle yourself?
Blakemore SJ, Wolpert D, Frith C., Neuroreport 11(11), 2000
PMID: 10943682
The cerebellum is involved in predicting the sensory consequences of action.
Blakemore SJ, Frith CD, Wolpert DM., Neuroreport 12(9), 2001
PMID: 11435916
Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ., J. Neurophysiol. 98(1), 2007
PMID: 17507504
Adaptation to gradual as compared with sudden visuo-motor distortions.
Kagerer FA, Contreras-Vidal JL, Stelmach GE., Exp Brain Res 115(3), 1997
PMID: 9262212
Formation of model-free motor memories during motor adaptation depends on perturbation schedule.
Orban de Xivry JJ, Lefevre P., J. Neurophysiol. 113(7), 2015
PMID: 25673736
Learning from sensory and reward prediction errors during motor adaptation.
Izawa J, Shadmehr R., PLoS Comput. Biol. 7(3), 2011
PMID: 21423711
Reward feedback accelerates motor learning.
Nikooyan AA, Ahmed AA., J. Neurophysiol. 113(2), 2014
PMID: 25355957
Acquisition of novel and complex motor skills: stable solutions where intrinsic noise matters less.
Sternad D, Huber ME, Kuznetsov N., Adv. Exp. Med. Biol. 826(), 2014
PMID: 25330888
Motor skill acquisition.
Newell KM., Annu Rev Psychol 42(), 1991
PMID: 2018394
How is a motor skill learned? Change and invariance at the levels of task success and trajectory control.
Shmuelof L, Krakauer JW, Mazzoni P., J. Neurophysiol. 108(2), 2012
PMID: 22514286

AUTHOR UNKNOWN, 0
Inside the brain of an elite athlete: the neural processes that support high achievement in sports.
Yarrow K, Brown P, Krakauer JW., Nat. Rev. Neurosci. 10(8), 2009
PMID: 19571792
Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.
Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW., Proc. Natl. Acad. Sci. U.S.A. 106(5), 2009
PMID: 19164589
Energy margins in dynamic object manipulation.
Hasson CJ, Shen T, Sternad D., J. Neurophysiol. 108(5), 2012
PMID: 22592302
Dynamics of a bouncing ball in human performance.
Sternad D, Duarte M, Katsumata H, Schaal S., Phys Rev E Stat Nonlin Soft Matter Phys 63(1 Pt 1), 2000
PMID: 11304282
Motor learning and prediction in a variable environment.
Davidson PR, Wolpert DM., Curr. Opin. Neurobiol. 13(2), 2003
PMID: 12744979
Forward modeling allows feedback control for fast reaching movements.
Desmurget M, Grafton S., Trends Cogn. Sci. (Regul. Ed.) 4(11), 2000
PMID: 11058820
Disruption of state estimation in the human lateral cerebellum.
Miall RC, Christensen LO, Cain O, Stanley J., PLoS Biol. 5(11), 2007
PMID: 18044990
Perspectives and problems in motor learning.
Wolpert DM, Ghahramani Z, Flanagan JR., Trends Cogn. Sci. (Regul. Ed.) 5(11), 2001
PMID: 11684481
Long-latency reflexes of the human arm reflect an internal model of limb dynamics.
Kurtzer IL, Pruszynski JA, Scott SH., Curr. Biol. 18(6), 2008
PMID: 18356051
Manipulating objects with internal degrees of freedom: evidence for model-based control.
Dingwell JB, Mah CD, Mussa-Ivaldi FA., J. Neurophysiol. 88(1), 2002
PMID: 12091548
Flexible representations of dynamics are used in object manipulation.
Ahmed AA, Wolpert DM, Flanagan JR., Curr. Biol. 18(10), 2008
PMID: 18485709
Forward models in visuomotor control.
Mehta B, Schaal S., J. Neurophysiol. 88(2), 2002
PMID: 12163543
Motor prediction.
Wolpert DM, Flanagan JR., Curr. Biol. 11(18), 2001
PMID: 11566114
Modifying equipment in early skill development: a tennis perspective.
Buszard T, Farrow D, Reid M, Masters RS., Res Q Exerc Sport 85(2), 2014
PMID: 25098017
Reward improves long-term retention of a motor memory through induction of offline memory gains.
Abe M, Schambra H, Wassermann EM, Luckenbaugh D, Schweighofer N, Cohen LG., Curr. Biol. 21(7), 2011
PMID: 21419628
Feedback after good versus poor trials affects intrinsic motivation.
Badami R, VaezMousavi M, Wulf G, Namazizadeh M., Res Q Exerc Sport 82(2), 2011
PMID: 21699117
Performance-based adaptive schedules enhance motor learning.
Choi Y, Qi F, Gordon J, Schweighofer N., J Mot Behav 40(4), 2008
PMID: 18628104
Neuronlike adaptive elements that can solve difficult learning control problems
Barto AG, Sutton RS, Anderson CW., 1983
The time-delayed inverted pendulum: implications for human balance control.
Milton J, Cabrera JL, Ohira T, Tajima S, Tonosaki Y, Eurich CW, Campbell SA., Chaos 19(2), 2009
PMID: 19566270

AUTHOR UNKNOWN, 0
Learning a stick-balancing task involves task-specific coupling between posture and hand displacements.
Cluff T, Boulet J, Balasubramaniam R., Exp Brain Res 213(1), 2011
PMID: 21706299
Functional stabilization of unstable fixed points: human pole balancing using time-to-balance information.
Foo P, Kelso JA, de Guzman GC., J Exp Psychol Hum Percept Perform 26(4), 2000
PMID: 10946715
Perceptual and motor learning underlies human stick-balancing skill.
Lee KY, O'Dwyer N, Halaki M, Smith R., J. Neurophysiol. 113(1), 2014
PMID: 25298388
Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science.
Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J., J Mot Behav 47(1), 2015
PMID: 25575219
Prediction precedes control in motor learning.
Flanagan JR, Vetter P, Johansson RS, Wolpert DM., Curr. Biol. 13(2), 2003
PMID: 12546789
Internal models for motor control and trajectory planning.
Kawato M., Curr. Opin. Neurobiol. 9(6), 1999
PMID: 10607637
Experimentally confirmed mathematical model for human control of a non-rigid object.
Dingwell JB, Mah CD, Mussa-Ivaldi FA., J. Neurophysiol. 91(3), 2003
PMID: 14602835
Dynamic touch.
Turvey MT., Am Psychol 51(11), 1996
PMID: 8937263
Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.
Ronsse R, Wei K, Sternad D., J. Neurophysiol. 103(5), 2010
PMID: 20130042
Explicit and implicit contributions to learning in a sensorimotor adaptation task.
Taylor JA, Krakauer JW, Ivry RB., J. Neurosci. 34(8), 2014
PMID: 24553942
Size of error affects cerebellar contributions to motor learning.
Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R., J. Neurophysiol. 103(4), 2010
PMID: 20164398
Natural error patterns enable transfer of motor learning to novel contexts.
Torres-Oviedo G, Bastian AJ., J. Neurophysiol. 107(1), 2011
PMID: 21957223
Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.
Wu HG, Miyamoto YR, Gonzalez Castro LN, Olveczky BP, Smith MA., Nat. Neurosci. 17(2), 2014
PMID: 24413700
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji HR, Khedkar P., IEEE Trans Neural Netw 3(5), 1992
PMID: 18276471
Computations underlying sensorimotor learning.
Wolpert DM, Flanagan JR., Curr. Opin. Neurobiol. 37(), 2015
PMID: 26719992

AUTHOR UNKNOWN, 0
The dissociable effects of punishment and reward on motor learning.
Galea JM, Mallia E, Rothwell J, Diedrichsen J., Nat. Neurosci. 18(4), 2015
PMID: 25706473
Motor Learning Enhances Use-Dependent Plasticity.
Mawase F, Uehara S, Bastian AJ, Celnik P., J. Neurosci. 37(10), 2017
PMID: 28143961
Use-dependent and error-based learning of motor behaviors.
Diedrichsen J, White O, Newman D, Lally N., J. Neurosci. 30(15), 2010
PMID: 20392938
The Psychophysics Toolbox.
Brainard DH., Spat Vis 10(4), 1997
PMID: 9176952

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29038562
PubMed | Europe PMC

Suchen in

Google Scholar