Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates

Thijssen B, Dijkstra TMH, Heskes T, Wessels LFA (2017)
Bioinformatics 34(5): 803-811.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Thijssen, Bram; Dijkstra, Tjeerd M. H.; Heskes, Tom; Wessels, Lodewyk F. A.
Einrichtung
Erscheinungsjahr
2017
Zeitschriftentitel
Bioinformatics
Band
34
Ausgabe
5
Seite(n)
803-811
ISSN
1367-4803
eISSN
1460-2059
Page URI
https://pub.uni-bielefeld.de/record/2918897

Zitieren

Thijssen B, Dijkstra TMH, Heskes T, Wessels LFA. Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates. Bioinformatics. 2017;34(5):803-811.
Thijssen, B., Dijkstra, T. M. H., Heskes, T., & Wessels, L. F. A. (2017). Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates. Bioinformatics, 34(5), 803-811. doi:10.1093/bioinformatics/btx666
Thijssen, B., Dijkstra, T. M. H., Heskes, T., and Wessels, L. F. A. (2017). Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates. Bioinformatics 34, 803-811.
Thijssen, B., et al., 2017. Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates. Bioinformatics, 34(5), p 803-811.
B. Thijssen, et al., “Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates”, Bioinformatics, vol. 34, 2017, pp. 803-811.
Thijssen, B., Dijkstra, T.M.H., Heskes, T., Wessels, L.F.A.: Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates. Bioinformatics. 34, 803-811 (2017).
Thijssen, Bram, Dijkstra, Tjeerd M. H., Heskes, Tom, and Wessels, Lodewyk F. A. “Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates”. Bioinformatics 34.5 (2017): 803-811.

47 References

Daten bereitgestellt von Europe PubMed Central.

Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae.
Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D., Proc. Natl. Acad. Sci. U.S.A. 100(7), 2003
PMID: 12660367
Oscillatory dynamics of cell cycleproteins in single yeast cells analyzed by imaging cytometry
Ball D.A.., 2011
Integrative analysis of cell cycle control in budding yeast.
Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ., Mol. Biol. Cell 15(8), 2004
PMID: 15169868
Properties of cell death models calibrated and compared using Bayesian approaches.
Eydgahi H, Chen WW, Muhlich JL, Vitkup D, Tsitsiklis JN, Sorger PK., Mol. Syst. Biol. 9(), 2013
PMID: 23385484
Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable isotope-coded affinity tag reagents.
Flory MR, Lee H, Bonneau R, Mallick P, Serikawa K, Morris DR, Aebersold R., Proteomics 6(23), 2006
PMID: 17133367
A sampling of the yeast proteome.
Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI., Mol. Cell. Biol. 19(11), 1999
PMID: 10523624

Gelman A.., 2014

Geyer C.J.., 1991
Global analysis of protein expression in yeast.
Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS., Nature 425(6959), 2003
PMID: 14562106
Bayesian inference for differentialequations
Girolami M.., 2008
High-resolution transcription atlas of the mitotic cell cycle in budding yeast.
Granovskaia MV, Jensen LJ, Ritchie ME, Toedling J, Ning Y, Bork P, Huber W, Steinmetz LM., Genome Biol. 11(3), 2010
PMID: 20193063
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP., PLoS Comput. Biol. 3(10), 2007
PMID: 17922568
Number and distribution of polyadenylated RNA sequences in yeast.
Hereford LM, Rosbash M., Cell 10(3), 1977
PMID: 321129
Dissecting the regulatory circuitry of a eukaryotic genome.
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA., Cell 95(5), 1998
PMID: 9845373
High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling.
Hug S, Raue A, Hasenauer J, Bachmann J, Klingmuller U, Timmer J, Theis FJ., Math Biosci 246(2), 2013
PMID: 23602931
Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs.
Miura F, Kawaguchi N, Yoshida M, Uematsu C, Kito K, Sakaki Y, Ito T., BMC Genomics 9(), 2008
PMID: 19040753

Morgan D.O.., 2007
The transcriptional landscape of the yeast genome defined by RNA sequencing.
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M., Science 320(5881), 2008
PMID: 18451266
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS., Nature 441(7095), 2006
PMID: 16699522
Global control of cell-cycle transcription by coupled CDK and network oscillators.
Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB., Nature 453(7197), 2008
PMID: 18463633
A complete set of nascenttranscription rates for yeast genes
Pelechano V.., 2011
Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.
Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmuller U, Timmer J., Bioinformatics 25(15), 2009
PMID: 19505944
Degradation of Ndd1 by APC/CCdh1generates a feed forward loop that times mitotic protein accumulation
Sajman J.., 2015
Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes.
Santos A, Wernersson R, Jensen LJ., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25378319
RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair.
Selby CP, Drapkin R, Reinberg D, Sancar A., Nucleic Acids Res. 25(4), 1997
PMID: 9016630
Comprehensive identification of cellcycle-regulated genes of the yeast Saccharomyces cerevisiae bymicroarray hybridization
Spellman P.T.., 2003
BCM: toolkit for Bayesian analysis of Computational Models using samplers.
Thijssen B, Dijkstra TM, Heskes T, Wessels LF., BMC Syst Biol 10(1), 2016
PMID: 27769238
Automated Parameter Blocking forEfficient Markov Chain Monte Carlo Sampling
Turek D.., 2017
Dependency of size of Saccharomyces cerevisiae cells on growth rate.
Tyson CB, Lord PG, Wheals AE., J. Bacteriol. 138(1), 1979
PMID: 374379
Modeling the cell division cycle: cdc2 and cyclin interactions.
Tyson JJ., Proc. Natl. Acad. Sci. U.S.A. 88(16), 1991
PMID: 1831270
Parameter uncertainty in biochemical models described by ordinary differential equations.
Vanlier J, Tiemann CA, Hilbers PA, van Riel NA., Math Biosci 246(2), 2013
PMID: 23535194
Characterization of the yeast transcriptome.
Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW., Cell 88(2), 1997
PMID: 9008165
Bayesian ranking of biochemical system models.
Vyshemirsky V, Girolami MA., Bioinformatics 24(6), 2007
PMID: 18057018
The elongation rate of proteins of different molecular weight classes in yeast.
Waldron C, Jund R, Lacroute F., FEBS Lett. 46(1), 1974
PMID: 4607959
Precision and functional specificity in mRNA decay.
Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO., Proc. Natl. Acad. Sci. U.S.A. 99(9), 2002
PMID: 11972065
Bayesian methods in bioinformatics and computational systems biology.
Wilkinson DJ., Brief. Bioinformatics 8(2), 2007
PMID: 17430978
Inferring signaling pathwaytopologies from multiple perturbation measurements of specific biochemicalspecies
Xu T.-R.., 2010

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29069283
PubMed | Europe PMC

Suchen in

Google Scholar