Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans
Koepff J, Morschett H, Busche T, Winkler A, Kalinowski J, Wiechert W, Oldiges M (2018)
BIOTECHNOLOGY PROGRESS 34(1): 287-292.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Koepff, Joachim;
Morschett, Holger;
Busche, TobiasUniBi;
Winkler, AnikaUniBi;
Kalinowski, JörnUniBi;
Wiechert, Wolfgang;
Oldiges, Marco
Einrichtung
Abstract / Bemerkung
Recently, a comprehensive screening workflow for the filamentous bacterium Streptomyces lividans, a highly performant source for pharmaceutically active agents was introduced. This framework used parallelized cultivation in microtiter plates to efficiently accelerate early upstream process development. Focusing on growth performance, cultivation was successfully scaled-up to 1 L stirred tank reactors. However, metabolic adaptation was observed on the transcriptomic level as among others, several genes incorporated in light response were upregulated during bioreactor cultivation. Despite it was assumed that this was attributed to the fact that reactor cultivations were performed in glass vessels exposed to daylight and artificial room light, this setup did not allow distinguishing exclusively between light and other effects. Upon that, the present study directly investigates the influence of light by defined illumination of microtiter plate cultures. Almost identical growth performance was observed for cultures grown in the dark or with illumination. Transcriptomics revealed the upregulation of seven genes of which 6 have previously been described to be relevant for carotenoid synthesis and its regulation. These pigments are effective quenchers of reactive oxygen species. The seventh transcript coded for a photo-lyase incorporated in UV-damage repair of DNA further confirming induced light response. However, this was fully compensated by metabolic adaptation on the transcriptomic level and overall process performance was maintained. Consequently, environmental conditions need extremely careful control and evaluation during in-depth omics analysis of bioprocesses. Otherwise metabolic adaptation induced by such issues can easily be misinterpreted, especially during studies addressing cultivation system comparisons. (c) 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:287-292, 2018
Stichworte
Streptomyces lividans;
miniaturized cultivation;
parallelized;
cultivation;
light response;
transcriptomic analysis;
high-throughput;
bioprocess development;
Photo BioLector
Erscheinungsjahr
2018
Zeitschriftentitel
BIOTECHNOLOGY PROGRESS
Band
34
Ausgabe
1
Seite(n)
287-292
ISSN
8756-7938
eISSN
1520-6033
Page URI
https://pub.uni-bielefeld.de/record/2918672
Zitieren
Koepff J, Morschett H, Busche T, et al. Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans. BIOTECHNOLOGY PROGRESS. 2018;34(1):287-292.
Koepff, J., Morschett, H., Busche, T., Winkler, A., Kalinowski, J., Wiechert, W., & Oldiges, M. (2018). Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans. BIOTECHNOLOGY PROGRESS, 34(1), 287-292. doi:10.1002/btpr.2566
Koepff, Joachim, Morschett, Holger, Busche, Tobias, Winkler, Anika, Kalinowski, Jörn, Wiechert, Wolfgang, and Oldiges, Marco. 2018. “Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans”. BIOTECHNOLOGY PROGRESS 34 (1): 287-292.
Koepff, J., Morschett, H., Busche, T., Winkler, A., Kalinowski, J., Wiechert, W., and Oldiges, M. (2018). Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans. BIOTECHNOLOGY PROGRESS 34, 287-292.
Koepff, J., et al., 2018. Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans. BIOTECHNOLOGY PROGRESS, 34(1), p 287-292.
J. Koepff, et al., “Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans”, BIOTECHNOLOGY PROGRESS, vol. 34, 2018, pp. 287-292.
Koepff, J., Morschett, H., Busche, T., Winkler, A., Kalinowski, J., Wiechert, W., Oldiges, M.: Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans. BIOTECHNOLOGY PROGRESS. 34, 287-292 (2018).
Koepff, Joachim, Morschett, Holger, Busche, Tobias, Winkler, Anika, Kalinowski, Jörn, Wiechert, Wolfgang, and Oldiges, Marco. “Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans”. BIOTECHNOLOGY PROGRESS 34.1 (2018): 287-292.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
28 References
Daten bereitgestellt von Europe PubMed Central.
Taxonomy, Physiology, and Natural Products of Actinobacteria.
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clement C, Ouhdouch Y, van Wezel GP., Microbiol. Mol. Biol. Rev. 80(1), 2015
PMID: 26609051
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clement C, Ouhdouch Y, van Wezel GP., Microbiol. Mol. Biol. Rev. 80(1), 2015
PMID: 26609051
Thoughts and facts about antibiotics: where we are now and where we are heading.
Berdy J., J. Antibiot. 65(8), 2012
PMID: 22511224
Berdy J., J. Antibiot. 65(8), 2012
PMID: 22511224
Hopwood, 2007
Production and secretion of proteins by streptomycetes.
Gilbert M, Morosoli R, Shareck F, Kluepfel D., Crit. Rev. Biotechnol. 15(1), 1995
PMID: 7736599
Gilbert M, Morosoli R, Shareck F, Kluepfel D., Crit. Rev. Biotechnol. 15(1), 1995
PMID: 7736599
Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering.
van Wezel GP, Krabben P, Traag BA, Keijser BJ, Kerste R, Vijgenboom E, Heijnen JJ, Kraal B., Appl. Environ. Microbiol. 72(8), 2006
PMID: 16885277
van Wezel GP, Krabben P, Traag BA, Keijser BJ, Kerste R, Vijgenboom E, Heijnen JJ, Kraal B., Appl. Environ. Microbiol. 72(8), 2006
PMID: 16885277
Robust, small-scale cultivation platform for Streptomyces coelicolor.
Sohoni SV, Bapat PM, Lantz AE., Microb. Cell Fact. 11(), 2012
PMID: 22252012
Sohoni SV, Bapat PM, Lantz AE., Microb. Cell Fact. 11(), 2012
PMID: 22252012
Morphogenesis of Streptomyces in submerged cultures.
van Dissel D, Claessen D, van Wezel GP., Adv. Appl. Microbiol. 89(), 2014
PMID: 25131399
van Dissel D, Claessen D, van Wezel GP., Adv. Appl. Microbiol. 89(), 2014
PMID: 25131399
Reducing the variability of antibiotic production in Streptomyces by cultivation in 24-square deepwell plates.
Siebenberg S, Bapat PM, Lantz AE, Gust B, Heide L., J. Biosci. Bioeng. 109(3), 2009
PMID: 20159569
Siebenberg S, Bapat PM, Lantz AE, Gust B, Heide L., J. Biosci. Bioeng. 109(3), 2009
PMID: 20159569
Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation.
Koepff J, Keller M, Tsolis KC, Busche T, Ruckert C, Hamed MB, Anne J, Kalinowski J, Wiechert W, Economou A, Oldiges M., Biotechnol. Bioeng. 114(9), 2017
PMID: 28436005
Koepff J, Keller M, Tsolis KC, Busche T, Ruckert C, Hamed MB, Anne J, Kalinowski J, Wiechert W, Economou A, Oldiges M., Biotechnol. Bioeng. 114(9), 2017
PMID: 28436005
Design and validation of a parallelized micro-photobioreactor enabling phototrophic bioprocess development at elevated throughput.
Morschett H, Schiprowski D, Muller C, Mertens K, Felden P, Meyer J, Wiechert W, Oldiges M., Biotechnol. Bioeng. 114(1), 2016
PMID: 27424867
Morschett H, Schiprowski D, Muller C, Mertens K, Felden P, Meyer J, Wiechert W, Oldiges M., Biotechnol. Bioeng. 114(1), 2016
PMID: 27424867
The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island.
Cruz-Morales P, Vijgenboom E, Iruegas-Bocardo F, Girard G, Yanez-Guerra LA, Ramos-Aboites HE, Pernodet JL, Anne J, van Wezel GP, Barona-Gomez F., Genome Biol Evol 5(6), 2013
PMID: 23709624
Cruz-Morales P, Vijgenboom E, Iruegas-Bocardo F, Girard G, Yanez-Guerra LA, Ramos-Aboites HE, Pernodet JL, Anne J, van Wezel GP, Barona-Gomez F., Genome Biol Evol 5(6), 2013
PMID: 23709624
Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations.
D'Huys PJ, Lule I, Van Hove S, Vercammen D, Wouters C, Bernaerts K, Anne J, Van Impe JF., J. Biotechnol. 152(4), 2010
PMID: 20797416
D'Huys PJ, Lule I, Van Hove S, Vercammen D, Wouters C, Bernaerts K, Anne J, Van Impe JF., J. Biotechnol. 152(4), 2010
PMID: 20797416
Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping.
Unthan S, Radek A, Wiechert W, Oldiges M, Noack S., Microb. Cell Fact. 14(), 2015
PMID: 25888907
Unthan S, Radek A, Wiechert W, Oldiges M, Noack S., Microb. Cell Fact. 14(), 2015
PMID: 25888907
Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum.
Busche T, Silar R, Picmanova M, Patek M, Kalinowski J., BMC Genomics 13(), 2012
PMID: 22943411
Busche T, Silar R, Picmanova M, Patek M, Kalinowski J., BMC Genomics 13(), 2012
PMID: 22943411
Complete genome sequence of Streptomyces lividans TK24.
Ruckert C, Albersmeier A, Busche T, Jaenicke S, Winkler A, Friðjonsson OH, Hreggviðsson GO, Lambert C, Badcock D, Bernaerts K, Anne J, Economou A, Kalinowski J., J. Biotechnol. 199(), 2015
PMID: 25680930
Ruckert C, Albersmeier A, Busche T, Jaenicke S, Winkler A, Friðjonsson OH, Hreggviðsson GO, Lambert C, Badcock D, Bernaerts K, Anne J, Economou A, Kalinowski J., J. Biotechnol. 199(), 2015
PMID: 25680930
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides.
Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, Bayer AS., Antimicrob. Agents Chemother. 55(2), 2010
PMID: 21115796
Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, Bayer AS., Antimicrob. Agents Chemother. 55(2), 2010
PMID: 21115796
Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster.
Takano H, Obitsu S, Beppu T, Ueda K., J. Bacteriol. 187(5), 2005
PMID: 15716454
Takano H, Obitsu S, Beppu T, Ueda K., J. Bacteriol. 187(5), 2005
PMID: 15716454
The singlet oxygen and carotenoid interaction.
Conn PF, Schalch W, Truscott TG., J. Photochem. Photobiol. B, Biol. 11(1), 1991
PMID: 1791493
Conn PF, Schalch W, Truscott TG., J. Photochem. Photobiol. B, Biol. 11(1), 1991
PMID: 1791493
Chemical quenching of singlet oxygen by carotenoids in plants.
Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M., Plant Physiol. 158(3), 2012
PMID: 22234998
Ramel F, Birtic S, Cuine S, Triantaphylides C, Ravanat JL, Havaux M., Plant Physiol. 158(3), 2012
PMID: 22234998
Lycopene as the most efficient biological carotenoid singlet oxygen quencher.
Di Mascio P, Kaiser S, Sies H., Arch. Biochem. Biophys. 274(2), 1989
PMID: 2802626
Di Mascio P, Kaiser S, Sies H., Arch. Biochem. Biophys. 274(2), 1989
PMID: 2802626
Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.
Hagi T, Kobayashi M, Nomura M., FEMS Microbiol. Lett. 350(2), 2013
PMID: 24325446
Hagi T, Kobayashi M, Nomura M., FEMS Microbiol. Lett. 350(2), 2013
PMID: 24325446
Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in Thermus thermophilus.
Takano H, Kondo M, Usui N, Usui T, Ohzeki H, Yamazaki R, Washioka M, Nakamura A, Hoshino T, Hakamata W, Beppu T, Ueda K., J. Bacteriol. 193(10), 2011
PMID: 21421762
Takano H, Kondo M, Usui N, Usui T, Ohzeki H, Yamazaki R, Washioka M, Nakamura A, Hoshino T, Hakamata W, Beppu T, Ueda K., J. Bacteriol. 193(10), 2011
PMID: 21421762
Berg, 2015
A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage.
Batschauer A., Plant J. 4(4), 1993
PMID: 8252071
Batschauer A., Plant J. 4(4), 1993
PMID: 8252071
Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors.
Sancar A., Chem. Rev. 103(6), 2003
PMID: 12797829
Sancar A., Chem. Rev. 103(6), 2003
PMID: 12797829
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 28960883
PubMed | Europe PMC
Suchen in