The problem of home choice in skyline-based homing
Müller M, Bertrand O, Differt D, Egelhaaf M (2018)
PLOS One 13(3): e0194070.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Einrichtung
Abstract / Bemerkung
Navigation in cluttered environments is an important challenge for animals and robots alike
and has been the subject of many studies trying to explain and mimic animal navigational
abilities. However, the question of selecting an appropriate home location has, so far,
received only little attention. This is surprising, since the choice of a home location might
greatly influence an animal’s navigation performance. To address the question of home
choice in cluttered environments, a systematic analysis of homing trajectories was per-
formed by computer simulations using a skyline-based local homing method. Our analysis
reveals that homing performance strongly depends on the location of the home in the envi-
ronment. Furthermore, it appears that by assessing homing success in the immediate vicin-
ity of the home, an animal might be able to predict its overall success in returning to it from
within a much larger area.
Erscheinungsjahr
2018
Zeitschriftentitel
PLOS One
Band
13
Ausgabe
3
Art.-Nr.
e0194070
Urheberrecht / Lizenzen
ISSN
1932-6203
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2918596
Zitieren
Müller M, Bertrand O, Differt D, Egelhaaf M. The problem of home choice in skyline-based homing. PLOS One. 2018;13(3): e0194070.
Müller, M., Bertrand, O., Differt, D., & Egelhaaf, M. (2018). The problem of home choice in skyline-based homing. PLOS One, 13(3), e0194070. doi:10.1371/journal.pone.0194070
Müller, Martin, Bertrand, Olivier, Differt, Dario, and Egelhaaf, Martin. 2018. “The problem of home choice in skyline-based homing”. PLOS One 13 (3): e0194070.
Müller, M., Bertrand, O., Differt, D., and Egelhaaf, M. (2018). The problem of home choice in skyline-based homing. PLOS One 13:e0194070.
Müller, M., et al., 2018. The problem of home choice in skyline-based homing. PLOS One, 13(3): e0194070.
M. Müller, et al., “The problem of home choice in skyline-based homing”, PLOS One, vol. 13, 2018, : e0194070.
Müller, M., Bertrand, O., Differt, D., Egelhaaf, M.: The problem of home choice in skyline-based homing. PLOS One. 13, : e0194070 (2018).
Müller, Martin, Bertrand, Olivier, Differt, Dario, and Egelhaaf, Martin. “The problem of home choice in skyline-based homing”. PLOS One 13.3 (2018): e0194070.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
journal.pone.0194070.pdf
4.62 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:58Z
MD5 Prüfsumme
71ef848078dd7a4384c6e121236b19d9
Name
S1_Appendix.pdf
167.52 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:58Z
MD5 Prüfsumme
9e39501a761ae78ca3b1ac7040036966
Name
S2_Appendix.pdf
979.42 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:58Z
MD5 Prüfsumme
4517ddcaf839d895bbd9aad55ef6e802
Name
S3_Appendix.pdf
1.69 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:58Z
MD5 Prüfsumme
75431a7f2d3811c86a90fead8d385954
Daten bereitgestellt von European Bioinformatics Institute (EBI)
2 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Image statistics of the environment surrounding freely behaving hoverflies.
Dyakova O, Müller MM, Egelhaaf M, Nordström K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 205(3), 2019
PMID: 30937518
Dyakova O, Müller MM, Egelhaaf M, Nordström K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 205(3), 2019
PMID: 30937518
Spiking Elementary Motion Detector in Neuromorphic Systems.
Milde MB, Bertrand OJN, Ramachandran H, Egelhaaf M, Chicca E., Neural Comput 30(9), 2018
PMID: 30021082
Milde MB, Bertrand OJN, Ramachandran H, Egelhaaf M, Chicca E., Neural Comput 30(9), 2018
PMID: 30021082
58 References
Daten bereitgestellt von Europe PubMed Central.
Neuroethology and Behavioral Physiology
R, 1983
R, 1983
Visual navigation in insects: coupling of egocentric and geocentric information
R, Journal of Experimental Biology 199(1), 1996
R, Journal of Experimental Biology 199(1), 1996
Desert ant navigation: how miniature brains solve complex tasks.
Wehner R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(8), 2003
PMID: 12879352
Wehner R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(8), 2003
PMID: 12879352
Biologically based artificial navigation systems: review and prospects.
Trullier O, Wiener SI, Berthoz A, Meyer JA., Prog. Neurobiol. 51(5), 1997
PMID: 9153072
Trullier O, Wiener SI, Berthoz A, Meyer JA., Prog. Neurobiol. 51(5), 1997
PMID: 9153072
Spatial memory in insect navigation.
Collett M, Chittka L, Collett TS., Curr. Biol. 23(17), 2013
PMID: 24028962
Collett M, Chittka L, Collett TS., Curr. Biol. 23(17), 2013
PMID: 24028962
Catchment areas of panoramic snapshots in outdoor scenes.
Zeil J, Hofmann MI, Chahl JS., J Opt Soc Am A Opt Image Sci Vis 20(3), 2003
PMID: 12630831
Zeil J, Hofmann MI, Chahl JS., J Opt Soc Am A Opt Image Sci Vis 20(3), 2003
PMID: 12630831
Flying Insects and Robots
J, 2009
J, 2009
The Sensory Ecology of Ant Navigation: From Natural Environments to Neural Mechanisms.
Knaden M, Graham P., Annu. Rev. Entomol. 61(), 2015
PMID: 26527301
Knaden M, Graham P., Annu. Rev. Entomol. 61(), 2015
PMID: 26527301
Respiration and Energetics of the Bumblebee Bombus terrestris Queen
J, Holarctic Ecology 7(2), 1984
J, Holarctic Ecology 7(2), 1984
Bumblebees: Their Behaviour and Ecology
D, 2003
D, 2003
Nest site selection by bumble bees (Hymenoptera: Apidae) in southern Alberta
KW, The Canadian Entomologist 110(03), 1978
KW, The Canadian Entomologist 110(03), 1978
Searching for a new home—scouting behavior of honeybee swarms
S, Behavioral Ecology 18(2), 2007
S, Behavioral Ecology 18(2), 2007
Landmark maps for honeybees
BA, Biological Cybernetics 57(1-2), 1987
BA, Biological Cybernetics 57(1-2), 1987
Local visual homing by matched-filter descent in image distances.
Moller R, Vardy A., Biol Cybern 95(5), 2006
PMID: 17021827
Moller R, Vardy A., Biol Cybern 95(5), 2006
PMID: 17021827
Perac: A neural architecture to control artificial animals
P, Robotics and Autonomous Systems 16(2-4), 1995
P, Robotics and Autonomous Systems 16(2-4), 1995
A model of ant route navigation driven by scene familiarity.
Baddeley B, Graham P, Husbands P, Philippides A., PLoS Comput. Biol. 8(1), 2012
PMID: 22241975
Baddeley B, Graham P, Husbands P, Philippides A., PLoS Comput. Biol. 8(1), 2012
PMID: 22241975
Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments.
Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B., PLoS Comput. Biol. 12(2), 2016
PMID: 26866692
Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B., PLoS Comput. Biol. 12(2), 2016
PMID: 26866692
A mobile robot employing insect strategies for navigation
D, Robotics and Autonomous systems 30(1), 2000
D, Robotics and Autonomous systems 30(1), 2000
Biologically plausible methods for robot visual homing
A, 2005
A, 2005
Adaptive Homing—Robotic Exploration Tours
VV, Adaptive Behavior 9(3-4), 2001
VV, Adaptive Behavior 9(3-4), 2001
Simulated visual homing in desert ant natural environments: efficiency of skyline cues.
Basten K, Mallot HA., Biol Cybern 102(5), 2010
PMID: 20300942
Basten K, Mallot HA., Biol Cybern 102(5), 2010
PMID: 20300942
Institute of Perception, Action and Behaviour, School of Informatics
M, 2011
M, 2011
Insects could exploit UV-green contrast for Landmark navigation.
Moller R., J. Theor. Biol. 214(4), 2002
PMID: 11851371
Moller R., J. Theor. Biol. 214(4), 2002
PMID: 11851371
Insect models of illumination-invariant skyline extraction from UV and green channels.
Differt D, Moller R., J. Theor. Biol. 380(), 2015
PMID: 26113191
Differt D, Moller R., J. Theor. Biol. 380(), 2015
PMID: 26113191
Homing in wood ants, Formica japonica: use of the skyline panorama
T, Journal of Experimental Biology 204(12), 2001
T, Journal of Experimental Biology 204(12), 2001
Ants use the panoramic skyline as a visual cue during navigation.
Graham P, Cheng K., Curr. Biol. 19(20), 2009
PMID: 19889365
Graham P, Cheng K., Curr. Biol. 19(20), 2009
PMID: 19889365
How might ants use panoramic views for route navigation?
Philippides A, Baddeley B, Cheng K, Graham P., J. Exp. Biol. 214(Pt 3), 2011
PMID: 21228203
Philippides A, Baddeley B, Cheng K, Graham P., J. Exp. Biol. 214(Pt 3), 2011
PMID: 21228203
AUTHOR UNKNOWN, 0
Robotics: Science and Systems
T, 2014
T, 2014
AUTHOR UNKNOWN, 0
Spectral contrasts for landmark navigation.
Kollmeier T, Roben F, Schenck W, Moller R., J Opt Soc Am A Opt Image Sci Vis 24(1), 2007
PMID: 17164837
Kollmeier T, Roben F, Schenck W, Moller R., J Opt Soc Am A Opt Image Sci Vis 24(1), 2007
PMID: 17164837
Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging.
Differt D, Moller R., Sensors (Basel) 16(10), 2016
PMID: 27690053
Differt D, Moller R., Sensors (Basel) 16(10), 2016
PMID: 27690053
AUTHOR UNKNOWN, 0
Efficient visual homing based on Fourier transformed panoramic images
W, Robotics and Autonomous Systems 54(4), 2006
W, Robotics and Autonomous Systems 54(4), 2006
Depth, contrast and view-based homing in outdoor scenes.
Sturzl W, Zeil J., Biol Cybern 96(5), 2007
PMID: 17443340
Sturzl W, Zeil J., Biol Cybern 96(5), 2007
PMID: 17443340
Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.
Murray T, Zeil J., PLoS ONE 12(10), 2017
PMID: 29088300
Murray T, Zeil J., PLoS ONE 12(10), 2017
PMID: 29088300
What is the relationship between visual environment and the form of ant learning-walks? An in silico investigation of insect navigation
AD, Adaptive Behavior 22(3), 2014
AD, Adaptive Behavior 22(3), 2014
Computational models of space: Isovists and isovist fields
LS, Computer Graphics and Image Processing 11(1), 1979
LS, Computer Graphics and Image Processing 11(1), 1979
Isovist analysis captures properties of space relevant for locomotion and experience.
Wiener JM, Franz G, Rossmanith N, Reichelt A, Mallot HA, Bulthoff HH., Perception 36(7), 2007
PMID: 17844972
Wiener JM, Franz G, Rossmanith N, Reichelt A, Mallot HA, Bulthoff HH., Perception 36(7), 2007
PMID: 17844972
Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera)
J, Journal of Comparative Physiology A 172(2), 1992
J, Journal of Comparative Physiology A 172(2), 1992
Looking and Learning: A Spatial Pattern in the Orientation Flight of the Wasp Vespula vulgaris
TS, Proceedings of the Royal Society of London B: Biological Sciences 252(1334), 1993
TS, Proceedings of the Royal Society of London B: Biological Sciences 252(1334), 1993
Why do bees turn back and look?
M, Journal of Comparative Physiology A 172(5), 1993
M, Journal of Comparative Physiology A 172(5), 1993
Exploratory behaviour of honeybees during orientation flights
J, Animal Behaviour 102(), 2015
J, Animal Behaviour 102(), 2015
Structure and function of learning flights in ground-nesting bees and wasps
J, Journal of Experimental Biology 199(1), 1996
J, Journal of Experimental Biology 199(1), 1996
Taking a goal-centred dynamic snapshot as a possibility for local homing in initially naïve bumblebees
A, Journal of Experimental Biology (), 2017
A, Journal of Experimental Biology (), 2017
Wind and sky as compass cues in desert ant navigation.
Muller M, Wehner R., Naturwissenschaften 94(7), 2007
PMID: 17361400
Muller M, Wehner R., Naturwissenschaften 94(7), 2007
PMID: 17361400
Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis
H, Journal of Experimental Biology 203(5), 2000
H, Journal of Experimental Biology 203(5), 2000
The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees
M, Journal of Experimental Biology 205(6), 2002
M, Journal of Experimental Biology 205(6), 2002
Linked Local Navigation for Visual Route Guidance
L, Adaptive Behavior 15(3), 2007
L, Adaptive Behavior 15(3), 2007
Three-dimensional models of natural environments and the mapping of navigational information.
Sturzl W, Grixa I, Mair E, Narendra A, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201(6), 2015
PMID: 25863682
Sturzl W, Grixa I, Mair E, Narendra A, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201(6), 2015
PMID: 25863682
A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes.
Bertrand OJ, Lindemann JP, Egelhaaf M., PLoS Comput. Biol. 11(11), 2015
PMID: 26583771
Bertrand OJ, Lindemann JP, Egelhaaf M., PLoS Comput. Biol. 11(11), 2015
PMID: 26583771
Vectorial representation of spatial goals in the hippocampus of bats.
Sarel A, Finkelstein A, Las L, Ulanovsky N., Science 355(6321), 2017
PMID: 28082589
Sarel A, Finkelstein A, Las L, Ulanovsky N., Science 355(6321), 2017
PMID: 28082589
The properties of the visual system in the Australian desert ant Melophorus bagoti
Schwarz S, Narendra A, Zeil J., Arthropod Struct Dev 40(2), 2011
PMID: IND44572631
Schwarz S, Narendra A, Zeil J., Arthropod Struct Dev 40(2), 2011
PMID: IND44572631
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 29522546
PubMed | Europe PMC
Suchen in