Towards systems metabolic engineering in Pichia pastoris

Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K (2017)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris.
Pichia pastoris; Komagataella phaffii; Non-conventional yeasts; Genetic; engineering; Metabolic engineering; Recombinant protein production; Promoters; Systems biology; Physiology
Page URI


Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. BIOTECHNOLOGY ADVANCES. 2017;35(6):681-710.
Schwarzhans, J. P., Luttermann, T., Geier, M., Kalinowski, J., & Friehs, K. (2017). Towards systems metabolic engineering in Pichia pastoris. BIOTECHNOLOGY ADVANCES, 35(6), 681-710. doi:10.1016/j.biotechadv.2017.07.009
Schwarzhans, Jan Philipp, Luttermann, Tobias, Geier, Martina, Kalinowski, Jörn, and Friehs, Karl. 2017. “Towards systems metabolic engineering in Pichia pastoris”. BIOTECHNOLOGY ADVANCES 35 (6): 681-710.
Schwarzhans, J. P., Luttermann, T., Geier, M., Kalinowski, J., and Friehs, K. (2017). Towards systems metabolic engineering in Pichia pastoris. BIOTECHNOLOGY ADVANCES 35, 681-710.
Schwarzhans, J.P., et al., 2017. Towards systems metabolic engineering in Pichia pastoris. BIOTECHNOLOGY ADVANCES, 35(6), p 681-710.
J.P. Schwarzhans, et al., “Towards systems metabolic engineering in Pichia pastoris”, BIOTECHNOLOGY ADVANCES, vol. 35, 2017, pp. 681-710.
Schwarzhans, J.P., Luttermann, T., Geier, M., Kalinowski, J., Friehs, K.: Towards systems metabolic engineering in Pichia pastoris. BIOTECHNOLOGY ADVANCES. 35, 681-710 (2017).
Schwarzhans, Jan Philipp, Luttermann, Tobias, Geier, Martina, Kalinowski, Jörn, and Friehs, Karl. “Towards systems metabolic engineering in Pichia pastoris”. BIOTECHNOLOGY ADVANCES 35.6 (2017): 681-710.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome-Wide Determination of Gene Essentiality by Transposon Insertion Sequencing in Yeast Pichia pastoris.
Zhu J, Gong R, Zhu Q, He Q, Xu N, Xu Y, Cai M, Zhou X, Zhang Y, Zhou M., Sci Rep 8(1), 2018
PMID: 29976927
PiggyBac transposon-mediated mutagenesis and application in yeast Komagataella phaffii.
Zhu J, Zhu Q, Gong R, Xu Q, Cai M, Jiang T, Zhou X, Zhou M, Zhang Y., Biotechnol Lett 40(9-10), 2018
PMID: 30003383
Engineered bidirectional promoters enable rapid multi-gene co-expression optimization.
Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A., Nat Commun 9(1), 2018
PMID: 30181586
Recent advances in the microbial hydroxylation and reduction of soy isoflavones.
Lee PG, Lee UJ, Song H, Choi KY, Kim BG., FEMS Microbiol Lett 365(19), 2018
PMID: 30184116

313 References

Daten bereitgestellt von Europe PubMed Central.

Real-time PCR-based determination of gene copy numbers in Pichia pastoris.
Abad S, Kitz K, Hormann A, Schreiner U, Hartner FS, Glieder A., Biotechnol J 5(4), 2010
PMID: 20349461
Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst.
Abad S, Nahalka J, Bergler G, Arnold SA, Speight R, Fotheringham I, Nidetzky B, Glieder A., Microb. Cell Fact. 9(), 2010
PMID: 20420682
Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production.
Ahmad M, Hirz M, Pichler H, Schwab H., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24743983
Transfer of metabolites across the peroxisomal membrane.
Antonenkov VD, Hiltunen JK., Biochim. Biophys. Acta 1822(9), 2011
PMID: 22206997
Construction of a novel Pichia pastoris strain for production of xanthophylls.
Araya-Garay JM, Ageitos JM, Vallejo JA, Veiga-Crespo P, Sanchez-Perez A, Villa TG., AMB Express 2(1), 2012
PMID: 22534340
Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene.
Araya-Garay JM, Feijoo-Siota L, Rosa-dos-Santos F, Veiga-Crespo P, Villa TG., Appl. Microbiol. Biotechnol. 93(6), 2011
PMID: 22159890
Can too many copies spoil the broth?
Aw R, Polizzi KM., Microb. Cell Fact. 12(), 2013
PMID: 24354594
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H., Mol. Syst. Biol. 2(), 2006
PMID: 16738554
A multi-level study of recombinant Pichia pastoris in different oxygen conditions.
Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P., BMC Syst Biol 4(), 2010
PMID: 20969759
Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris.
Baumann K, Adelantado N, Lang C, Mattanovich D, Ferrer P., Microb. Cell Fact. 10(), 2011
PMID: 22050768
Synthesis of methyl halides from biomass using engineered microbes.
Bayer TS, Widmaier DM, Temme K, Mirsky EA, Santi DV, Voigt CA., J. Am. Chem. Soc. 131(18), 2009
PMID: 19378995
Editing plant genomes with CRISPR/Cas9.
Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V., Curr. Opin. Biotechnol. 32(), 2014
PMID: 25437637
Metabolic engineering of Pichia pastoris X-33 for lycopene production
Bhataya, Process Biochem. 44(), 2009
The molecular structure of centromeres and telomeres.
Blackburn EH., Annu. Rev. Biochem. 53(), 1984
PMID: 6383193
Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose.
Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S., Glycobiology 14(9), 2004
PMID: 15190003
The nature of systems biology.
Bruggeman FJ, Westerhoff HV., Trends Microbiol. 15(1), 2006
PMID: 17113776
Reverse engineering of protein secretion by uncoupling of cell cycle phases from growth.
Buchetics M, Dragosits M, Maurer M, Rebnegger C, Porro D, Sauer M, Gasser B, Mattanovich D., Biotechnol. Bioeng. 108(10), 2011
PMID: 21557199
Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications.
Camattari A, Goh A, Yip LY, Tan AH, Ng SW, Tran A, Liu G, Liachko I, Dunham MJ, Rancati G., Microb. Cell Fact. 15(1), 2016
PMID: 27515025
Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis).
Cankar K, van Houwelingen A, Goedbloed M, Renirie R, de Jong RM, Bouwmeester H, Bosch D, Sonke T, Beekwilder J., FEBS Lett. 588(6), 2014
PMID: 24530525
Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions.
Carnicer M, Ten Pierick A, van Dam J, Heijnen JJ, Albiol J, van Gulik W, Ferrer P., Microb. Cell Fact. 11(), 2012
PMID: 22704468
Bricks and blueprints: methods and standards for DNA assembly.
Casini A, Storch M, Baldwin GS, Ellis T., Nat. Rev. Mol. Cell Biol. 16(9), 2015
PMID: 26081612
Heterologous protein expression in the methylotrophic yeast Pichia pastoris.
Cereghino JL, Cregg JM., FEMS Microbiol. Rev. 24(1), 2000
PMID: 10640598
Production of ortho-hydroxydaidzein derivatives by a recombinant strain of Pichia pastoris harboring a cytochrome P450 fusion gene
Chang, Process Biochem. 48(), 2013
Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.
Cheng H, Lv J, Wang H, Wang B, Li Z, Deng Z., Appl. Microbiol. Biotechnol. 98(8), 2014
PMID: 24419799
Biotransformation of isoflavones daidzein and genistein by recombinant Pichia pastoris expressing membrane-anchoring and reductase fusion chimeric CYP105D7
Chiang, J. Taiwan Inst. Chem. Eng. 60(), 2016
Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris.
Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU., Proc. Natl. Acad. Sci. U.S.A. 100(9), 2003
PMID: 12702754
In silico identification of gene amplification targets for improvement of lycopene production.
Choi HS, Lee SY, Kim TY, Woo HM., Appl. Environ. Microbiol. 76(10), 2010
PMID: 20348305
Violacein: Properties and Production of a Versatile Bacterial Pigment.
Choi SY, Yoon KH, Lee JI, Mitchell RJ., Biomed Res Int 2015(), 2015
PMID: 26339614
Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement.
Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee DY., Microb. Cell Fact. 9(), 2010
PMID: 20594333
Safety evaluation of a lipase enzyme preparation, expressed in Pichia pastoris, intended for use in the degumming of edible vegetable oil.
Ciofalo V, Barton N, Kreps J, Coats I, Shanahan D., Regul. Toxicol. Pharmacol. 45(1), 2006
PMID: 16563586
Modular Integrated Secretory System Engineering in Pichia pastoris To Enhance G-Protein Coupled Receptor Expression.
Claes K, Vandewalle K, Laukens B, Laeremans T, Vosters O, Langer I, Parmentier M, Steyaert J, Callewaert N., ACS Synth Biol 5(10), 2016
PMID: 27176489
High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene.
Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA., Biotechnology (N.Y.) 9(5), 1991
PMID: 1367310
Riboneogenesis in yeast.
Clasquin MF, Melamud E, Singer A, Gooding JR, Xu X, Dong A, Cui H, Campagna SR, Savchenko A, Yakunin AF, Rabinowitz JD, Caudy AA., Cell 145(6), 2011
PMID: 21663798
Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics.
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vazquez F, Abasolo I, Giuliani M, Jantti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S Jr, Tutino ML, Villaverde A., Biotechnol. Adv. 31(2), 2012
PMID: 22985698
Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure.
Coughlan AY, Hanson SJ, Byrne KP, Wolfe KH., Genome Biol Evol 8(8), 2016
PMID: 27497317
Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy.
Crampton N, Bonass WA, Kirkham J, Rivetti C, Thomson NH., Nucleic Acids Res. 34(19), 2006
PMID: 17012275
Pichia pastoris as a host system for transformations.
Cregg JM, Barringer KJ, Hessler AY, Madden KR., Mol. Cell. Biol. 5(12), 1985
PMID: 3915774
Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides.
Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X., Metab. Eng. 20(), 2013
PMID: 24126082
Nonhomologous end joining in yeast.
Daley JM, Palmbos PL, Wu D, Wilson TE., Annu. Rev. Genet. 39(), 2005
PMID: 16285867
Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris.
Davidson RC, Nett JH, Renfer E, Li H, Stadheim TA, Miller BJ, Miele RG, Hamilton SR, Choi BK, Mitchell TI, Wildt S., Glycobiology 14(5), 2004
PMID: 15033937
E unum pluribus: multiple proteins from a self-processing polyprotein.
de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD., Trends Biotechnol. 24(2), 2005
PMID: 16380176
Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
de Lima PB, Mulder KC, Melo NT, Carvalho LS, Menino GS, Mulinari E, de Castro VH, Dos Reis TF, Goldman GH, Magalhaes BS, Parachin NS., Microb. Cell Fact. 15(1), 2016
PMID: 27634467
Genome sequence of the recombinant protein production host Pichia pastoris.
De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N., Nat. Biotechnol. 27(6), 2009
PMID: 19465926
Asparagine-linked glycosylation in the yeast Golgi.
Dean N., Biochim. Biophys. Acta 1426(2), 1999
PMID: 9878803
Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast.
Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Kollensperger G, Mattanovich D, Gasser B., Free Radic. Biol. Med. 52(9), 2012
PMID: 22406321
Repressible promoters - a novel tool to generate conditional mutants in Pichia pastoris.
Delic M, Mattanovich D, Gasser B., Microb. Cell Fact. 12(), 2013
PMID: 23347582
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM., Nucleic Acids Res. 41(7), 2013
PMID: 23460208
Improving functional annotation for industrial microbes: a case study with Pichia pastoris
Dikicioglu, Trends Biotechnol. (), 2014
Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience.
Dixon RA, Pasinetti GM., Plant Physiol. 154(2), 2010
PMID: 20921162
Combinatorial biosynthesis of reduced polyketides.
Weissman KJ, Leadlay PF., Nat. Rev. Microbiol. 3(12), 2005
PMID: 16322741
Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors.
Douin V, Bornes S, Creancier L, Rochaix P, Favre G, Prats AC, Couderc B., BMC Biotechnol. 4(), 2004
PMID: 15279677
The effect of temperature on the proteome of recombinant Pichia pastoris.
Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D., J. Proteome Res. 8(3), 2009
PMID: 19216534
The response to unfolded protein is involved in osmotolerance of Pichia pastoris.
Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, Kreil DP, Altmann F, Mattanovich D., BMC Genomics 11(), 2010
PMID: 20346137
Pyruvic acid production using methylotrophic as catalyst yeast transformants
Eisenberg, J. Mol. Catal. 2(), 1997
Over-expression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris.
Emmerstorfer A, Wimmer-Teubenbacher M, Wriessnegger T, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H., Biotechnol J 10(4), 2015
PMID: 25641738
Combinatorial pathway assembly in yeast
Essani, AIMS Bioeng. 2(), 2015
Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity.
Feng P, Shang Y, Cen K, Wang C., Proc. Natl. Acad. Sci. U.S.A. 112(36), 2015
PMID: 26305932
Microbial conversion of steroid compounds: recent developments
Fernandes, Enzym. Microb. Technol. 32(), 2003
Control of estrogen receptor ligand binding by Hsp90.
Fliss AE, Benzeno S, Rao J, Caplan AJ., J. Steroid Biochem. Mol. Biol. 72(5), 2000
PMID: 10822011
A blueprint of the amino acid biosynthesis network of hemiascomycetes.
Forster J, Halbfeld C, Zimmermann M, Blank LM., FEMS Yeast Res. 14(7), 2014
PMID: 25187056
Nootkatone--a biotechnological challenge.
Fraatz MA, Berger RG, Zorn H., Appl. Microbiol. Biotechnol. 83(1), 2009
PMID: 19333595
Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production.
Gao L, Cai M, Shen W, Xiao S, Zhou X, Zhang Y., Microb. Cell Fact. 12(), 2013
PMID: 24011431
Engineering of Pichia pastoris for improved production of antibody fragments.
Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D., Biotechnol. Bioeng. 94(2), 2006
PMID: 16570317
Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions.
Gasser B, Maurer M, Rautio J, Sauer M, Bhattacharyya A, Saloheimo M, Penttila M, Mattanovich D., BMC Genomics 8(), 2007
PMID: 17578563
Engineering of biotin-prototrophy in Pichia pastoris for robust production processes.
Gasser B, Dragosits M, Mattanovich D., Metab. Eng. 12(6), 2010
PMID: 20688186
Chemoenzymic synthesis of N-(phosphonomethyl) glycine
Gavagan, J. Organomet. Chem. 62(), 1997
Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae.
Gavira C, Hofer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D., Metab. Eng. 18(), 2013
PMID: 23518241
Production of human cytochrome P450 2D6 drug metabolites with recombinant microbes--a comparative study.
Geier M, Braun A, Emmerstorfer A, Pichler H, Glieder A., Biotechnol J 7(11), 2012
PMID: 22930520
Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis.
Geier M, Brandner C, Strohmeier GA, Hall M, Hartner FS, Glieder A., Beilstein J Org Chem 11(), 2015
PMID: 26664594
Compact multi-enzyme pathways in P. pastoris.
Geier M, Fauland P, Vogl T, Glieder A., Chem. Commun. (Camb.) 51(9), 2015
PMID: 25502218
Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
Generoso WC, Gottardi M, Oreb M, Boles E., J. Microbiol. Methods 127(), 2016
PMID: 27327211
The methylotrophic yeasts
Gleeson, Yeast 4(), 1988
Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays.
Graf A, Gasser B, Dragosits M, Sauer M, Leparc GG, Tuchler T, Kreil DP, Mattanovich D., BMC Genomics 9(), 2008
PMID: 18713468
In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories.
Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O., Microb. Cell Fact. 12(), 2013
PMID: 24059635
The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins.
Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N., Microb. Cell Fact. 9(), 2010
PMID: 20591165
Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells.
Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, Lopez BS., Mol. Cell 14(5), 2004
PMID: 15175156
Glycosylation engineering in yeast: the advent of fully humanized yeast.
Hamilton SR, Gerngross TU., Curr. Opin. Biotechnol. 18(5), 2007
PMID: 17951046
Humanization of yeast to produce complex terminally sialylated glycoproteins.
Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU., Science 313(5792), 2006
PMID: 16960007
Promoter library designed for fine-tuned gene expression in Pichia pastoris.
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A., Nucleic Acids Res. 36(12), 2008
PMID: 18539608
The molecular steps of citrinin biosynthesis in fungi
He, Chem. Sci. 7(), 2016
Identification and deletion of the major secreted protein of Pichia pastoris.
Heiss S, Maurer M, Hahn R, Mattanovich D, Gasser B., Appl. Microbiol. Biotechnol. 97(3), 2012
PMID: 22801711
Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization.
Heiss S, Puxbaum V, Gruber C, Altmann F, Mattanovich D, Gasser B., Microbiology (Reading, Engl.) 161(7), 2015
PMID: 25934645
Carbon metabolism limits recombinant protein production in Pichia pastoris.
Heyland J, Fu J, Blank LM, Schmid A., Biotechnol. Bioeng. 108(8), 2011
PMID: 21351072
Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS., Science 324(5924), 2009
PMID: 19213877

Invitrogen, 2010
Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.
Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J., Biotechnol. Bioeng. 113(5), 2015
PMID: 26480251
Carrier-mediated transport of thiamine in baker's yeast.
Iwashima A, Nishino H, Nose Y., Biochim. Biophys. Acta 330(2), 1973
PMID: 4591128
Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology.
Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N., Nat Protoc 4(1), 2009
PMID: 19131957
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
Jakociunas T, Bonde I, Herrgard M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD., Metab. Eng. 28(), 2015
PMID: 25638686
Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies
Jensen, Microb. Cell Factories (), 2017
The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2).
Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, Kim BG, Roe JH, Kim SC, Smith CP, Cho BK., Nat Commun 7(), 2016
PMID: 27251447
Inactivation of a GAL4-like transcription factor improves cell fitness and product yield in glycoengineered Pichia pastoris strains.
Jiang B, Argyros R, Bukowski J, Nelson S, Sharkey N, Kim S, Copeland V, Davidson RC, Chen R, Zhuang J, Sethuraman N, Stadheim TA., Appl. Environ. Microbiol. 81(1), 2014
PMID: 25344235
Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris.
Johnson MA, Waterham HR, Ksheminska GP, Fayura LR, Cereghino JL, Stasyk OV, Veenhuis M, Kulachkovsky AR, Sibirny AA, Cregg JM., Genetics 151(4), 1999
PMID: 10101164
Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis.
Jorda J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Ferrer P, Albiol J, Wahl A., BMC Syst Biol 7(), 2013
PMID: 23448228
Manufacturing molecules through metabolic engineering.
Keasling JD., Science 330(6009), 2010
PMID: 21127247
Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis.
Kegel A, Martinez P, Carter SD, Astrom SU., Nucleic Acids Res. 34(5), 2006
PMID: 16549875
Developments in the tools and methodologies of synthetic biology.
Kelwick R, MacDonald JT, Webb AJ, Freemont P., Front Bioeng Biotechnol 2(), 2014
PMID: 25505788
A synthetic biology framework for programming eukaryotic transcription functions.
Khalil AS, Lu TK, Bashor CJ, Ramirez CL, Pyenson NC, Joung JK, Collins JJ., Cell 150(3), 2012
PMID: 22863014
Coexpression of multiple genes reconstitutes two pathways of very long-chain polyunsaturated fatty acid biosynthesis in Pichia pastoris.
Kim SH, Roh KH, Kim KS, Kim HU, Lee KR, Kang HC, Kim JB., Biotechnol. Lett. 36(9), 2014
PMID: 24863294
Biosynthesis and biotechnological production of ginsenosides.
Kim YJ, Zhang D, Yang DC., Biotechnol. Adv. 33(6 Pt 1), 2015
PMID: 25747290
Next-generation genome-scale models for metabolic engineering.
King ZA, Lloyd CJ, Feist AM, Palsson BO., Curr. Opin. Biotechnol. 35(), 2015
PMID: 25575024
Leucine biosynthesis in fungi: entering metabolism through the back door.
Kohlhaw GB., Microbiol. Mol. Biol. Rev. 67(1), 2003
PMID: 12626680
CRISPR-based technologies for the manipulation of eukaryotic genomes
Komor, Cell 168(), 2016
Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway.
Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A., Microb. Cell Fact. 11(), 2012
PMID: 22330134
Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris.
Krainer FW, Gmeiner C, Neutsch L, Windwarder M, Pletzenauer R, Herwig C, Altmann F, Glieder A, Spadiut O., Sci Rep 3(), 2013
PMID: 24252857
Optimizing cofactor availability for the production of recombinant heme peroxidase in Pichia pastoris.
Krainer FW, Capone S, Jager M, Vogl T, Gerstmann M, Glieder A, Herwig C, Spadiut O., Microb. Cell Fact. 14(), 2015
PMID: 25586641
Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.
Krainer FW, Gerstmann MA, Darnhofer B, Birner-Gruenberger R, Glieder A., J. Biotechnol. 233(), 2016
PMID: 27432633
High-quality genome sequence of Pichia pastoris CBS7435.
Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H., J. Biotechnol. 154(4), 2011
PMID: 21575661
Ergosterol determination in Saccharomyces cerevisiae. Comparison of different methods.
Lamacka M, Sajbidor J., Biotechnology techniques. 11(10), 1997
PMID: IND20618383
The vitamin-sensitive promoter PTHI11 enables pre-defined autonomous induction of recombinant protein production in Pichia pastoris.
Landes N, Gasser B, Vorauer-Uhl K, Lhota G, Mattanovich D, Maurer M., Biotechnol. Bioeng. 113(12), 2016
PMID: 27345605
Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays
Landry, Nat. Nanotechnol. 102(), 2017
Engineering yeast for producing human glycoproteins: where are we now?
Laukens B, De Visscher C, Callewaert N., Future Microbiol 10(1), 2015
PMID: 25598335
A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae.
Leber R, Zenz R, Schrottner K, Fuchsbichler S, Puhringer B, Turnowsky F., Eur. J. Biochem. 268(4), 2001
PMID: 11179957
Systems strategies for developing industrial microbial strains.
Lee SY, Kim HU., Nat. Biotechnol. 33(10), 2015
PMID: 26448090
Systems biotechnology for strain improvement.
Lee SY, Lee DY, Kim TY., Trends Biotechnol. 23(7), 2005
PMID: 15923052
An episomal expression vector for screening mutant gene libraries in Pichia pastoris.
Lee CC, Williams TG, Wong DW, Robertson GH., Plasmid 54(1), 2005
PMID: 15907541
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY., Nat. Chem. Biol. 8(6), 2012
PMID: 22596205
A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly.
Lee ME, DeLoache WC, Cervantes B, Dueber JE., ACS Synth Biol 4(9), 2015
PMID: 25871405
Optimization of humanized IgGs in glycoengineered Pichia pastoris.
Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU., Nat. Biotechnol. 24(2), 2006
PMID: 16429149
An autonomously replicating sequence for use in a wide range of budding yeasts.
Liachko I, Dunham MJ., FEMS Yeast Res. 14(2), 2013
PMID: 24205893
GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.
Liachko I, Youngblood RA, Tsui K, Bubb KL, Queitsch C, Raghuraman MK, Nislow C, Brewer BJ, Dunham MJ., PLoS Genet. 10(3), 2014
PMID: 24603708
New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris.
Lin Cereghino GP, Lin Cereghino J, Sunga AJ, Johnson MA, Lim M, Gleeson MA, Cregg JM., Gene 263(1-2), 2001
PMID: 11223254
Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris.
Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM., Mol. Cell. Biol. 26(3), 2006
PMID: 16428444
An efficient screen for peroxisome-deficient mutants of Pichia pastoris.
Liu H, Tan X, Veenhuis M, McCollum D, Cregg JM., J. Bacteriol. 174(15), 1992
PMID: 1629154
Use of genome-scale metabolic models for understanding microbial physiology.
Liu L, Agren R, Bordel S, Nielsen J., FEBS Lett. 584(12), 2010
PMID: 20420838
Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces.
Liu L, Redden H, Alper HS., Curr. Opin. Biotechnol. 24(6), 2013
PMID: 23541504
Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale.
Liu JK, O'Brien EJ, Lerman JA, Zengler K, Palsson BO, Feist AM., BMC Syst Biol 8(), 2014
PMID: 25227965
Metabolic engineering of Pichia pastoris for the production of dammarenediol-II.
Liu XB, Liu M, Tao XY, Zhang ZX, Wang FQ, Wei DZ., J. Biotechnol. 216(), 2015
PMID: 26467715
Production of glucaric acid from myo-inositol in engineered Pichia pastoris.
Liu Y, Gong X, Wang C, Du G, Chen J, Kang Z., Enzyme Microb. Technol. 91(), 2016
PMID: 27444324
Discovery of a rhamnose utilization pathway and rhamnose-inducible promoters in Pichia pastoris.
Liu B, Zhang Y, Zhang X, Yan C, Zhang Y, Xu X, Zhang W., Sci Rep 6(), 2016
PMID: 27256707
Cultivation strategies to enhance productivity of Pichia pastoris: A review.
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K., Biotechnol. Adv. 33(6 Pt 2), 2015
PMID: 26027890
Effects of glycerol supply and specific growth rate on methanol-free production of CALB by P. pastoris: functional characterisation of a novel promoter.
Looser V, Luthy D, Straumann M, Hecht K, Melzoch K, Kovar K., Appl. Microbiol. Biotechnol. 101(8), 2017
PMID: 28130631
Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically.
Love KR, Panagiotou V, Jiang B, Stadheim TA, Love JC., Biotechnol. Bioeng. 106(2), 2010
PMID: 20148400
Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity.
Love KR, Politano TJ, Panagiotou V, Jiang B, Stadheim TA, Love JC., PLoS ONE 7(6), 2012
PMID: 22685548
Comparative genomics and transcriptomics of Pichia pastoris.
Love KR, Shah KA, Whittaker CA, Wu J, Bartlett MC, Ma D, Leeson RL, Priest M, Borowsky J, Young SK, Love JC., BMC Genomics 17(), 2016
PMID: 27495311
Heterologous protein production using the Pichia pastoris expression system.
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM., Yeast 22(4), 2005
PMID: 15704221
CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
Mans, FEMS Yeast Res. (), 2015
Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient Pichia pastoris
Marsalek, Biotechnol. J. 1600584(), 2017
Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris.
Marx H, Mattanovich D, Sauer M., Microb. Cell Fact. 7(), 2008
PMID: 18664246
Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris.
Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B., Microb. Cell Fact. 8(), 2009
PMID: 19490607
Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast.
McIsaac RS, Oakes BL, Wang X, Dummit KA, Botstein D, Noyes MB., Nucleic Acids Res. 41(4), 2012
PMID: 23275543
Biopharmaceutical discovery and production in yeast.
Meehl MA, Stadheim TA., Curr. Opin. Biotechnol. 30(), 2014
PMID: 25014890
Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.
Meesapyodsuk D, Chen Y, Ng SH, Chen J, Qiu X., J. Lipid Res. 56(11), 2015
PMID: 26323290
Highly efficient gene targeting in the Aspergillus niger kusA mutant.
Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF., J. Biotechnol. 128(4), 2007
PMID: 17275117
Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology.
Naatsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A., PLoS ONE 7(6), 2012
PMID: 22768112
Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast.
Nag DK, White MA, Petes TD., Nature 340(6231), 1989
PMID: 2546083
Interaction of Pik1p and Sjl proteins in membrane trafficking.
Nguyen PH, Hasek J, Kohlwein SD, Romero C, Choi JH, Vancura A., FEMS Yeast Res. 5(4-5), 2005
PMID: 15691741
Engineering alternative butanol production platforms in heterologous bacteria.
Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL., Metab. Eng. 11(4-5), 2009
PMID: 19464384
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
Nishida, Science 102(), 2016
Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production.
Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Rußmayer H, Pflugl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D., Metab. Eng. 24(), 2014
PMID: 24853352
Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.
Nocon J, Steiger M, Mairinger T, Hohlweg J, Rußmayer H, Hann S, Gasser B, Mattanovich D., Appl. Microbiol. Biotechnol. 100(13), 2016
PMID: 27020289
A Modular Toolkit for Generating Pichia pastoris Secretion Libraries.
Obst U, Lu TK, Sieber V., ACS Synth Biol 6(6), 2017
PMID: 28252957
Novel function of Wsc proteins as a methanol-sensing machinery in the yeast Pichia pastoris
Ohsawa, Mol. Microbiol. 1–47(), 2017
Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling.
Osterlund T, Nookaew I, Bordel S, Nielsen J., BMC Syst Biol 7(), 2013
PMID: 23631471
Producers and important dietary sources of ochratoxin A and citrinin.
Ostry V, Malir F, Ruprich J., Toxins (Basel) 5(9), 2013
PMID: 24048364
Industrial systems biology.
Otero JM, Nielsen J., Biotechnol. Bioeng. 105(3), 2010
PMID: 19891008

Palsson, 2006
Sequential deletion of Pichia pastoris genes by a self-excisable cassette.
Pan R, Zhang J, Shen WL, Tao ZQ, Li SP, Yan X., FEMS Yeast Res. 11(3), 2011
PMID: 21208374
Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae.
Partow S, Siewers V, Bjorn S, Nielsen J, Maury J., Yeast 27(11), 2010
PMID: 20625983
High-level production of spinach glycolate oxidase in the methylotrophic yeast Pichia pastoris: engineering a biocatalyst.
Payne MS, Petrillo KL, Gavagan JE, Wagner LW, DiCosimo R, Anton DL., Gene 167(1-2), 1995
PMID: 8566780
Engineering Pichia pastoris for biocatalysis: co-production of two active enzymes.
Payne MS, Petrillo KL, Gavagan JE, DiCosimo R, Wagner LW, Anton DL., Gene 194(2), 1997
PMID: 9272859
The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis.
Peplowska K, Markgraf DF, Ostrowicz CW, Bange G, Ungermann C., Dev. Cell 12(5), 2007
PMID: 17488625
Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care.
Perez-Pinera P, Han N, Cleto S, Cao J, Purcell O, Shah KA, Lee K, Ram R, Lu TK., Nat Commun 7(), 2016
PMID: 27470089
Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure.
Pfeffer M, Maurer M, Kollensperger G, Hann S, Graf AB, Mattanovich D., Microb. Cell Fact. 10(), 2011
PMID: 21703020
Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation.
Pfeffer M, Maurer M, Stadlmann J, Grass J, Delic M, Altmann F, Mattanovich D., Appl. Microbiol. Biotechnol. 93(6), 2012
PMID: 22350260
Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris.
Poirier Y, Erard N, MacDonald-Comber Petetot J., FEMS Microbiol. Lett. 207(1), 2002
PMID: 11886758
Peroxisomal beta-oxidation--a metabolic pathway with multiple functions.
Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK., Biochim. Biophys. Acta 1763(12), 2006
PMID: 17028011
Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression.
Polupanov AS, Nazarko VY, Sibirny AA., Int. J. Biochem. Cell Biol. 44(11), 2012
PMID: 22835474
Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.
Portela RM, Vogl T, Kniely C, Fischer JE, Oliveira R, Glieder A., ACS Synth Biol 6(3), 2016
PMID: 27973777
Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae.
Praekelt UM, Byrne KL, Meacock PA., Yeast 10(4), 1994
PMID: 7941734
Genome-scale models of microbial cells: evaluating the consequences of constraints.
Price ND, Reed JL, Palsson BO., Nat. Rev. Microbiol. 2(11), 2004
PMID: 15494745
Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris.
Prielhofer R, Maurer M, Klein J, Wenger J, Kiziak C, Gasser B, Mattanovich D., Microb. Cell Fact. 12(), 2013
PMID: 23347568
Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level.
Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B., BMC Genomics 16(), 2015
PMID: 25887254
Auxotrophic yeast strains in fundamental and applied research.
Pronk JT., Appl. Environ. Microbiol. 68(5), 2002
PMID: 11976076
Peroxisome biogenesis.
Purdue PE, Lazarow PB., Annu. Rev. Cell Dev. Biol. 17(), 2001
PMID: 11687502
Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris.
Puxbaum V, Mattanovich D, Gasser B., Appl. Microbiol. Biotechnol. 99(7), 2015
PMID: 25722021
The bud tip is the cellular hot spot of protein secretion in yeasts.
Puxbaum V, Gasser B, Mattanovich D., Appl. Microbiol. Biotechnol. 100(18), 2016
PMID: 27338576
GAP promoter library for fine-tuning of gene expression in Pichia pastoris.
Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J., Appl. Environ. Microbiol. 77(11), 2011
PMID: 21498769
New insights into the structure and function of but neglected Calvin cycle enzyme
Raines, J. Exp. Bot. 50(), 1999
In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response.
Rebnegger C, Graf AB, Valli M, Steiger MG, Gasser B, Maurer M, Mattanovich D., Biotechnol J 9(4), 2014
PMID: 24323948
Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates.
Rebnegger C, Vos T, Graf AB, Valli M, Pronk JT, Daran-Lapujade P, Mattanovich D., Appl. Environ. Microbiol. 82(15), 2016
PMID: 27208115
Proteomic analysis and genome annotation of Pichia pastoris, a recombinant protein expression host.
Renuse S, Madugundu AK, Kumar P, Nair BG, Gowda H, Prasad TS, Pandey A., Proteomics 14(23-24), 2014
PMID: 25346215
Production of the antimalarial drug precursor artemisinic acid in engineered yeast.
Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD., Nature 440(7086), 2006
PMID: 16612385
Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680.
Roh C, Seo SH, Choi KY, Cha M, Pandey BP, Kim JH, Park JS, Kim DH, Chang IS, Kim BG., J. Biosci. Bioeng. 108(1), 2009
PMID: 19577190
Digital and analog gene circuits for biotechnology.
Roquet N, Lu TK., Biotechnol J 9(5), 2014
PMID: 24677719
Synthetic recombinase-based state machines in living cells.
Roquet N, Soleimany AP, Ferris AC, Aaronson S, Lu TK., Science 353(6297), 2016
PMID: 27463678
A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector.
Rose MD, Novick P, Thomas JH, Botstein D, Fink GR., Gene 60(2-3), 1987
PMID: 3327750
Systems-level organization of yeast methylotrophic lifestyle.
Rußmayer H, Buchetics M, Gruber C, Valli M, Grillitsch K, Modarres G, Guerrasio R, Klavins K, Neubauer S, Drexler H, Steiger M, Troyer C, Al Chalabi A, Krebiehl G, Sonntag D, Zellnig G, Daum G, Graf AB, Altmann F, Koellensperger G, Hann S, Sauer M, Mattanovich D, Gasser B., BMC Biol. 13(), 2015
PMID: 26400155
Metabolomics sampling of Pichia pastoris revisited: rapid filtration prevents metabolite loss during quenching.
Russmayer H, Troyer C, Neubauer S, Steiger MG, Gasser B, Hann S, Koellensperger G, Sauer M, Mattanovich D., FEMS Yeast Res. 15(6), 2015
PMID: 26091839
Pichia pastoris Aft1--a novel transcription factor, enhancing recombinant protein secretion.
Ruth C, Buchetics M, Vidimce V, Kotz D, Naschberger S, Mattanovich D, Pichler H, Gasser B., Microb. Cell Fact. 13(), 2014
PMID: 25205197
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO., Nat Protoc 6(9), 2011
PMID: 21886097
Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization.
Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K., Microb. Cell Fact. 15(), 2016
PMID: 27206580
Non-canonical integration events in Pichia pastoris encountered during standard transformation analysed with genome sequencing.
Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K., Sci Rep 6(), 2016
PMID: 27958335
A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production.
Schwarzhans JP, Luttermann T, Wibberg D, Winkler A, Hubner W, Huser T, Kalinowski J, Friehs K., Front Microbiol 8(), 2017
PMID: 28512458
Analysis of optimality in natural and perturbed metabolic networks.
Segre D, Vitkup D, Church GM., Proc. Natl. Acad. Sci. U.S.A. 99(23), 2002
PMID: 12415116
Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica
Shabbir, AIMS Bioeng. 3(), 2016
Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris.
Shah KA, Clark JJ, Goods BA, Politano TJ, Mozdzierz NJ, Zimnisky RM, Leeson RL, Love JC, Love KR., Biotechnol. Bioeng. 112(12), 2015
PMID: 26032261
Efficient testosterone production by engineered Pichia pastoris co-expressing human 17β-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae glucose 6-phosphate dehydrogenase with NADPH regeneration
Shao, Green Chem. 18(), 2016
Kinase Screening in Pichia pastoris Identified Promising Targets Involved in Cell Growth and Alcohol Oxidase 1 Promoter (PAOX1) Regulation.
Shen W, Kong C, Xue Y, Liu Y, Cai M, Zhang Y, Jiang T, Zhou X, Zhou M., PLoS ONE 11(12), 2016
PMID: 27936065
A novel methanol-free Pichia pastoris system for recombinant protein expression.
Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M., Microb. Cell Fact. 15(1), 2016
PMID: 27769297
Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production.
Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY., Biotechnol J 5(7), 2010
PMID: 20503221
Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates.
Sola A, Jouhten P, Maaheimo H, Sanchez-Ferrando F, Szyperski T, Ferrer P., Microbiology (Reading, Engl.) 153(Pt 1), 2007
PMID: 17185557
Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production.
Stadlmayr G, Mecklenbrauker A, Rothmuller M, Maurer M, Sauer M, Mattanovich D, Gasser B., J. Biotechnol. 150(4), 2010
PMID: 20933554
The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae.
Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA., J. Appl. Microbiol. 109(1), 2010
PMID: 20070446
Polyketide biosynthesis: a millennium review.
Staunton J, Weissman KJ., Nat Prod Rep 18(4), 2001
PMID: 11548049
Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast.
Storici F, Durham CL, Gordenin DA, Resnick MA., Proc. Natl. Acad. Sci. U.S.A. 100(25), 2003
PMID: 14630945
Refined Pichia pastoris reference genome sequence.
Sturmberger L, Chappell T, Geier M, Krainer F, Day KJ, Vide U, Trstenjak S, Schiefer A, Richardson T, Soriaga L, Darnhofer B, Birner-Gruenberger R, Glick BS, Tolstorukov I, Cregg J, Madden K, Glieder A., J. Biotechnol. 235(), 2016
PMID: 27084056
In vivo ligation of linear DNA molecules to circular forms in the yeast Saccharomyces cerevisiae.
Suzuki K, Imai Y, Yamashita I, Fukui S., J. Bacteriol. 155(2), 1983
PMID: 6307979
Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector.
Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA., Nat. Biotechnol. 22(5), 2004
PMID: 15064769

Takagi, 2012
Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property.
Tao H, Guo D, Zhang Y, Deng Z, Liu T., Biotechnol Biofuels 8(), 2015
PMID: 26120362
The development of metabolomic sampling procedures for Pichia pastoris, and baseline metabolome data.
Tredwell GD, Edwards-Jones B, Leak DJ, Bundy JG., PLoS ONE 6(1), 2011
PMID: 21283710
Rapid screening of cellular stress responses in recombinant Pichia pastoris strains using metabolite profiling.
Tredwell GD, Aw R, Edwards-Jones B, Leak DJ, Bundy JG., J. Ind. Microbiol. Biotechnol. 44(3), 2017
PMID: 28160205
An abundance of bidirectional promoters in the human genome.
Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM., Genome Res. 14(1), 2004
PMID: 14707170
Improved Gene Targeting through Cell Cycle Synchronization.
Tsakraklides V, Brevnova E, Stephanopoulos G, Shaw AJ., PLoS ONE 10(7), 2015
PMID: 26192309
Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris.
Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR., Nucleic Acids Res. 15(9), 1987
PMID: 3108861
Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function
Valli, FEMS Yeast Res. (), 2016
The significance of peroxisomes in methanol metabolism in methylotrophic yeast.
van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M., Biochim. Biophys. Acta 1763(12), 2006
PMID: 17023065
Ten years of next-generation sequencing technology.
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C., Trends Genet. 30(9), 2014
PMID: 25108476
Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris.
Vassileva A, Chugh DA, Swaminathan S, Khanna N., Protein Expr. Purif. 21(1), 2001
PMID: 11162389
A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae.
Verna J, Lodder A, Lee K, Vagts A, Ballester R., Proc. Natl. Acad. Sci. U.S.A. 94(25), 1997
PMID: 9391108
In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris.
Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R., Appl. Environ. Microbiol. 70(5), 2004
PMID: 15128513
High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.
Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ., Appl. Environ. Microbiol. 73(13), 2007
PMID: 17496128
Synthetic core promoters for Pichia pastoris.
Vogl T, Ruth C, Pitzer J, Kickenweiz T, Glieder A., ACS Synth Biol 3(3), 2013
PMID: 24187969
Restriction site free cloning (RSFC) plasmid family for seamless, sequence independent cloning in Pichia pastoris.
Vogl T, Ahmad M, Krainer FW, Schwab H, Glieder A., Microb. Cell Fact. 14(), 2015
PMID: 26169367

Vogl, 2015
A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris.
Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A., ACS Synth Biol 5(2), 2015
PMID: 26592304
Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.
Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M., J. Biol. Chem. 291(12), 2016
PMID: 26828066
Peroxisome biogenesis.
Waterham HR, Cregg JM., Bioessays 19(1), 1997
PMID: 9008417
Peroxisomal targeting, import, and assembly of alcohol oxidase in Pichia pastoris.
Waterham HR, Russell KA, Vries Y, Cregg JM., J. Cell Biol. 139(6), 1997
PMID: 9396748
Pichia pastoris mutants as host strains for efficient secretion of recombinant branched chain aminotransferase (BCAT).
Weinhandl K, Ballach M, Winkler M, Ahmad M, Glieder A, Birner-Gruenberger R, Fotheringham I, Escalettes F, Camattari A., J. Biotechnol. 235(), 2016
PMID: 27287536
Biosynthesis and engineering of isoprenoid small molecules.
Withers ST, Keasling JD., Appl. Microbiol. Biotechnol. 73(5), 2006
PMID: 17115212
Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources.
Wriessnegger T, Gubitz G, Leitner E, Ingolic E, Cregg J, de la Cruz BJ, Daum G., Biochim. Biophys. Acta 1771(4), 2007
PMID: 17293161
Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.
Wriessnegger T, Augustin P, Engleder M, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H., Metab. Eng. 24(), 2014
PMID: 24747046
Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.
Wriessnegger T, Moser S, Emmerstorfer-Augustin A, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Pichler H., Fungal Genet. Biol. 89(), 2016
PMID: 26898115
Engineering Pichia pastoris for stereoselective nitrile hydrolysis by co-producing three heterologous proteins
Wu, Appl. Microbiol. Biotechnol. 52(), 1999
Peroxisomes targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris
Xiao, Prep. Biochem. Biotechnol. (), 2016
Bidirectional promoters generate pervasive transcription in yeast.
Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM., Nature 457(7232), 2009
PMID: 19169243
Methylotrophic yeast Pichia pastoris as a chassis organism for polyketide synthesis via the full citrinin biosynthetic pathway.
Xue Y, Kong C, Shen W, Bai C, Ren Y, Zhou X, Zhang Y, Cai M., J. Biotechnol. 242(), 2016
PMID: 27913218
Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis.
Yurimoto H, Oku M, Sakai Y., Int J Microbiol 2011(), 2011
PMID: 21754936
Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris.
Yu XW, Wang R, Zhang M, Xu Y, Xiao R., Microb. Cell Fact. 11(), 2012
PMID: 22866667
Metabolic pathway compartmentalization: an underappreciated opportunity?
Zecchin A, Stapor PC, Goveia J, Carmeliet P., Curr. Opin. Biotechnol. 34(), 2014
PMID: 25499800
Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy.
Zhang P, Zhang W, Zhou X, Bai P, Cregg JM, Zhang Y., Appl. Environ. Microbiol. 76(18), 2010
PMID: 20656869
Deletion of genes encoding fatty acid desaturases leads to alterations in stress sensitivity in Pichia pastoris.
Zhang M, Liu Z, Yu Q, Mao J, Zhang B, Xing L, Li M., FEMS Yeast Res. 15(4), 2015
PMID: 25903382
Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts.
Zhang Y, Wang C, Wang L, Yang R, Hou P, Liu J., J. Ind. Microbiol. Biotechnol. 44(3), 2017
PMID: 28101807
Enhancing Biosynthesis of a Ginsenoside Precursor by Self-Assembly of Two Key Enzymes in Pichia pastoris.
Zhao C, Gao X, Liu X, Wang Y, Yang S, Wang F, Ren Y., J. Agric. Food Chem. 64(17), 2016
PMID: 27074597
Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.
Zhou YJ, Buijs NA, Zhu Z, Gomez DO, Boonsombuti A, Siewers V, Nielsen J., J. Am. Chem. Soc. 138(47), 2016
PMID: 27753483
A systematical investigation on the genetic stability of multi-copy Pichia pastoris strains.
Zhu T, Guo M, Sun C, Qian J, Zhuang Y, Chu J, Zhang S., Biotechnol. Lett. 31(5), 2009
PMID: 19152072

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28760369
PubMed | Europe PMC

Suchen in

Google Scholar