Pendular energy transduction within the step during human walking on slopes at different speeds

Dewolf AH, Ivanenko YP, Lacquaniti F, Willems PA (2017)
PloS one 12(10): e0186963.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dewolf, Arthur H.; Ivanenko, Yuri P.; Lacquaniti, Francesco; Willems, Patrick A.
Einrichtung
Erscheinungsjahr
2017
Zeitschriftentitel
PloS one
Band
12
Ausgabe
10
Art.-Nr.
e0186963
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2914978

Zitieren

Dewolf AH, Ivanenko YP, Lacquaniti F, Willems PA. Pendular energy transduction within the step during human walking on slopes at different speeds. PloS one. 2017;12(10): e0186963.
Dewolf, A. H., Ivanenko, Y. P., Lacquaniti, F., & Willems, P. A. (2017). Pendular energy transduction within the step during human walking on slopes at different speeds. PloS one, 12(10), e0186963. doi:10.1371/journal.pone.0186963
Dewolf, A. H., Ivanenko, Y. P., Lacquaniti, F., and Willems, P. A. (2017). Pendular energy transduction within the step during human walking on slopes at different speeds. PloS one 12:e0186963.
Dewolf, A.H., et al., 2017. Pendular energy transduction within the step during human walking on slopes at different speeds. PloS one, 12(10): e0186963.
A.H. Dewolf, et al., “Pendular energy transduction within the step during human walking on slopes at different speeds”, PloS one, vol. 12, 2017, : e0186963.
Dewolf, A.H., Ivanenko, Y.P., Lacquaniti, F., Willems, P.A.: Pendular energy transduction within the step during human walking on slopes at different speeds. PloS one. 12, : e0186963 (2017).
Dewolf, Arthur H., Ivanenko, Yuri P., Lacquaniti, Francesco, and Willems, Patrick A. “Pendular energy transduction within the step during human walking on slopes at different speeds”. PloS one 12.10 (2017): e0186963.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry.
Sombric CJ, Calvert JS, Torres-Oviedo G., Front Physiol 10(), 2019
PMID: 30800072
Kinematic patterns while walking on a slope at different speeds.
Dewolf AH, Ivanenko Y, Zelik KE, Lacquaniti F, Willems PA., J Appl Physiol (1985) 125(2), 2018
PMID: 29698109

59 References

Daten bereitgestellt von Europe PubMed Central.

The sources of external work in level walking and running.
Cavagna GA, Thys H, Zamboni A., J. Physiol. (Lond.) 262(3), 1976
PMID: 1011078
The mechanics of walking in children.
Cavagna GA, Franzetti P, Fuchimoto T., J. Physiol. (Lond.) 343(), 1983
PMID: 6644619
Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
Ivanenko YP, Dominici N, Cappellini G, Dan B, Cheron G, Lacquaniti F., J. Exp. Biol. 207(Pt 21), 2004
PMID: 15371487
Mechanics and energetics of human locomotion on sand.
Lejeune TM, Willems PA, Heglund NC., J. Exp. Biol. 201(Pt 13), 1998
PMID: 9622579
Adaptations to changing speed, load, and gradient in human walking: cost of transport, optimal speed, and pendulum.
Gomenuka NA, Bona RL, da Rosa RG, Peyre-Tartaruga LA., Scand J Med Sci Sports 24(3), 2013
PMID: 24102934
The pendular mechanism does not determine the optimal speed of loaded walking on gradients.
Gomenuka NA, Bona RL, da Rosa RG, Peyre-Tartaruga LA., Hum Mov Sci 47(), 2016
PMID: 27017543
Pendular energy transduction within the step in human walking.
Cavagna GA, Willems PA, Legramandi MA, Heglund NC., J. Exp. Biol. 205(Pt 21), 2002
PMID: 12324550
Energy-saving gait mechanics with head-supported loads.
Heglund NC, Willems PA, Penta M, Cavagna GA., Nature 375(6526), 1995
PMID: 7723841
The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
Minetti AE, Ardigo LP, Saibene F., Acta Physiol. Scand. 150(3), 1994
PMID: 8010138
The transmission efficiency of backward walking at different gradients.
Minetti AE, Ardigo LP., Pflugers Arch. 442(4), 2001
PMID: 11510887
Energetic consequences of walking like an inverted pendulum: step-to-step transitions.
Kuo AD, Donelan JM, Ruina A., Exerc Sport Sci Rev 33(2), 2005
PMID: 15821430
The rebound of the body during uphill and downhill running at different speeds.
Dewolf AH, Penailillo LE, Willems PA., J. Exp. Biol. 219(Pt 15), 2016
PMID: 27207641
Determination of the vertical ground reaction forces acting upon individual limbs during healthy and clinical gait.
Meurisse GM, Dierick F, Schepens B, Bastien GJ., Gait Posture 43(), 2015
PMID: 26549482
Biomechanical analysis of running in weightlessness on a treadmill equipped with a subject loading system.
Gosseye TP, Willems PA, Heglund NC., Eur. J. Appl. Physiol. 110(4), 2010
PMID: 20582597
External, internal and total work in human locomotion
AUTHOR UNKNOWN, 1995
Mechanical work and muscular efficiency in walking children.
Schepens B, Bastien GJ, Heglund NC, Willems PA., J. Exp. Biol. 207(Pt 4), 2004
PMID: 14718502
Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
Biewener AA., J. Exp. Zoolog. Part A Comp. Exp. Biol. 305(11), 2006
PMID: 17029267
Biomechanics of descending ramps
AUTHOR UNKNOWN, 1997
The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis.
Lay AN, Hass CJ, Gregor RJ., J Biomech 39(9), 2005
PMID: 15990102
Gait dynamics on an inclined walkway.
McIntosh AS, Beatty KT, Dwan LN, Vickers DR., J Biomech 39(13), 2005
PMID: 16169000
Whole-body angular momentum in incline and decline walking.
Silverman AK, Wilken JM, Sinitski EH, Neptune RR., J Biomech 45(6), 2012
PMID: 22325978
Mechanical determinants of gradient walking energetics in man.
Minetti AE, Ardigo LP, Saibene F., J. Physiol. (Lond.) 472(), 1993
PMID: 8145168
Positive and negative work performances and their efficiencies in human locomotion
AUTHOR UNKNOWN, 1968
The optimal locomotion on gradients: walking, running or cycling?
Ardigo LP, Saibene F, Minetti AE., Eur. J. Appl. Physiol. 90(3-4), 2003
PMID: 12898263
Neglected losses and key costs: tracking the energetics of walking and running.
Bertram JE, Hasaneini SJ., J. Exp. Biol. 216(Pt 6), 2013
PMID: 23447662
A comparative collision-based analysis of human gait.
Lee DV, Comanescu TN, Butcher MT, Bertram JE., Proc. Biol. Sci. 280(1771), 2013
PMID: 24089334
Motion of the body centre of gravity as a summary indicator of the mechanics of human pathological gait.
Detrembleur C, van den Hecke A, Dierick F., Gait Posture 12(3), 2000
PMID: 11154935
Energy cost, mechanical work, and efficiency of hemiparetic walking.
Detrembleur C, Dierick F, Stoquart G, Chantraine F, Lejeune T., Gait Posture 18(2), 2003
PMID: 14654207
The major determinants in normal and pathological gait.
SAUNDERS JB, INMAN VT, EBERHART HD., J Bone Joint Surg Am 35-A(3), 1953
PMID: 13069544
Passive Dynamic Walking
AUTHOR UNKNOWN, 1990
Tendon elasticity and positional control
AUTHOR UNKNOWN, 1995
Compass gait mechanics account for top walking speeds in ducks and humans.
Usherwood JR, Szymanek KL, Daley MA., J. Exp. Biol. 211(Pt 23), 2008
PMID: 19011215
Optimum walking techniques for quadrupeds and bipeds
AUTHOR UNKNOWN, 1980
Simultaneous positive and negative external mechanical work in human walking.
Donelan JM, Kram R, Kuo AD., J Biomech 35(1), 2002
PMID: 11747890
Effect of load and speed on the energetic cost of human walking.
Bastien GJ, Willems PA, Schepens B, Heglund NC., Eur. J. Appl. Physiol. 94(1-2), 2005
PMID: 15650888
Mechanics of walking.
Cavagna GA, Margaria R., J Appl Physiol 21(1), 1966
PMID: 5903923
Ballistic walking.
Mochon S, McMahon TA., J Biomech 13(1), 1980
PMID: 7354094
Energy cost and muscular activity required for propulsion during walking.
Gottschall JS, Kram R., J. Appl. Physiol. 94(5), 2002
PMID: 12506042
A modeling study of mechanical energetic optimality in incline walking
AUTHOR UNKNOWN, 2014
The scaling of uphill and downhill locomotion in legged animals.
Birn-Jeffery AV, Higham TE., Integr. Comp. Biol. 54(6), 2014
PMID: 24733147
Postural adaptation to walking on inclined surfaces: I. Normal strategies.
Leroux A, Fung J, Barbeau H., Gait Posture 15(1), 2002
PMID: 11809582
The functional role of the triceps surae muscle during human locomotion.
Honeine JL, Schieppati M, Gagey O, Do MC., PLoS ONE 8(1), 2013
PMID: 23341916
The simplest walking model: stability, complexity, and scaling.
Garcia M, Chatterjee A, Ruina A, Coleman M., J Biomech Eng 120(2), 1998
PMID: 10412391
The effects of sloped surfaces on locomotion: an electromyographic analysis.
Lay AN, Hass CJ, Richard Nichols T, Gregor RJ., J Biomech 40(6), 2006
PMID: 16872616
A unified perspective on ankle push-off in human walking.
Zelik KE, Adamczyk PG., J. Exp. Biol. 219(Pt 23), 2016
PMID: 27903626
Effects of stride frequency on mechanical power and energy expenditure of walking.
Minetti AE, Capelli C, Zamparo P, di Prampero PE, Saibene F., Med Sci Sports Exerc 27(8), 1995
PMID: 7476065
WORK AGAINST GRAVITY AND WORK DUE TO VELOCITY CHANGES IN RUNNING
AUTHOR UNKNOWN, 1930
The double contact phase in walking children.
Bastien GJ, Heglund NC, Schepens B., J. Exp. Biol. 206(Pt 17), 2003
PMID: 12878665
Soft Tissue Deformations Contribute to the Mechanics of Walking in Obese Adults.
Fu XY, Zelik KE, Board WJ, Browning RC, Kuo AD., Med Sci Sports Exerc 47(7), 2015
PMID: 25380475

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29073208
PubMed | Europe PMC

Suchen in

Google Scholar