The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110

Wolf T, Droste J, Gren T, Ortseifen V, Schneiker-Bekel S, Zemke T, Pühler A, Kalinowski J (2017)
BMC Genomics 18(1): 562.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.65 MB
Abstract / Bemerkung
Background Acarbose is used in the treatment of diabetes mellitus type II and is produced by Actinoplanes sp. SE50/110. Although the biosynthesis of acarbose has been intensively studied, profound knowledge about transcription factors involved in acarbose biosynthesis and their binding sites has been missing until now. In contrast to acarbose biosynthetic gene clusters in Streptomyces spp., the corresponding gene cluster of Actinoplanes sp. SE50/110 lacks genes for transcriptional regulators. Results The acarbose regulator C (AcrC) was identified through an in silico approach by aligning the LacI family regulators of acarbose biosynthetic gene clusters in Streptomyces spp. with the Actinoplanes sp. SE50/110 genome. The gene for acrC, located in a head-to-head arrangement with the maltose/maltodextrin ABC transporter malEFG operon, was deleted by introducing PCR targeting for Actinoplanes sp. SE50/110. Characterization was carried out through cultivation experiments, genome-wide microarray hybridizations, and RT-qPCR as well as electrophoretic mobility shift assays for the elucidation of binding motifs. The results show that AcrC binds to the intergenic region between acbE and acbD in Actinoplanes sp. SE50/110 and acts as a transcriptional repressor on these genes. The transcriptomic profile of the wild type was reconstituted through a complementation of the deleted acrC gene. Additionally, regulatory sequence motifs for the binding of AcrC were identified in the intergenic region of acbE and acbD. It was shown that AcrC expression influences acarbose formation in the early growth phase. Interestingly, AcrC does not regulate the malEFG operon. Conclusions This study characterizes the first known transcription factor of the acarbose biosynthetic gene cluster in Actinoplanes sp. SE50/110. It therefore represents an important step for understanding the regulatory network of this organism. Based on this work, rational strain design for improving the biotechnological production of acarbose can now be implemented.
Stichworte
Actinoplanes; Acarbose; MalR; AcrC; Transcriptional regulation; Actinomycetes
Erscheinungsjahr
2017
Zeitschriftentitel
BMC Genomics
Band
18
Ausgabe
1
Art.-Nr.
562
ISSN
1471-2164
eISSN
1471-2164
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2913116

Zitieren

Wolf T, Droste J, Gren T, et al. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. BMC Genomics. 2017;18(1): 562.
Wolf, T., Droste, J., Gren, T., Ortseifen, V., Schneiker-Bekel, S., Zemke, T., Pühler, A., et al. (2017). The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. BMC Genomics, 18(1), 562. https://doi.org/10.1186/s12864-017-3941-x
Wolf, Timo, Droste, Julian, Gren, Tetiana, Ortseifen, Vera, Schneiker-Bekel, Susanne, Zemke, Till, Pühler, Alfred, and Kalinowski, Jörn. 2017. “The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110”. BMC Genomics 18 (1): 562.
Wolf, T., Droste, J., Gren, T., Ortseifen, V., Schneiker-Bekel, S., Zemke, T., Pühler, A., and Kalinowski, J. (2017). The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. BMC Genomics 18:562.
Wolf, T., et al., 2017. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. BMC Genomics, 18(1): 562.
T. Wolf, et al., “The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110”, BMC Genomics, vol. 18, 2017, : 562.
Wolf, T., Droste, J., Gren, T., Ortseifen, V., Schneiker-Bekel, S., Zemke, T., Pühler, A., Kalinowski, J.: The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. BMC Genomics. 18, : 562 (2017).
Wolf, Timo, Droste, Julian, Gren, Tetiana, Ortseifen, Vera, Schneiker-Bekel, Susanne, Zemke, Till, Pühler, Alfred, and Kalinowski, Jörn. “The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110”. BMC Genomics 18.1 (2017): 562.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
af7992fb2717de95fc16fe2d07fc63e5


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110.
Schaffert L, März C, Burkhardt L, Droste J, Brandt D, Busche T, Rosen W, Schneiker-Bekel S, Persicke M, Pühler A, Kalinowski J., Microb Cell Fact 18(1), 2019
PMID: 31253141
Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era.
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP., Nat Prod Rep 35(6), 2018
PMID: 29721572

63 References

Daten bereitgestellt von Europe PubMed Central.


Creutzfeldt W., 1988
Significance of testing platelet functions in vitro.
Holmsen H., Eur. J. Clin. Invest. 24 Suppl 1(), 1994
PMID: 8013528
Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose.
Wehmeier UF, Piepersberg W., Appl. Microbiol. Biotechnol. 63(6), 2003
PMID: 14669056
The biosynthesis and metabolism of Acarbose in Actinoplanes sp. SE 50/110: a progress report
Wehmeier UF., 2003
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545
Chemistry and biochemistry of microbial α-Glucosidase inhibitors
Truscheit E, Frommer W, Junge B, Müller L, Schmidt DD, Wingender W., 1981
Members of the genus Actinoplanes and their antibiotics.
Parenti F, Coronelli C., Annu. Rev. Microbiol. 33(), 1979
PMID: 386928
Actinoplanes
Vobis G, Schäfer J, Kämpfer P., 2012
Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway.
Zhang CS, Stratmann A, Block O, Bruckner R, Podeschwa M, Altenbach HJ, Wehmeier UF, Piepersberg W., J. Biol. Chem. 277(25), 2002
PMID: 11937512
The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism.
Wendler S, Hurtgen D, Kalinowski J, Klein A, Niehaus K, Schulte F, Schwientek P, Wehlmann H, Wehmeier UF, Puhler A., J. Biotechnol. 167(2), 2012
PMID: 22944206
Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 131(), 2015
PMID: 26597626
Genetic engineering in Actinoplanes sp. SE50/110 - development of an intergeneric conjugation system for the introduction of actinophage-based integrative vectors.
Gren T, Ortseifen V, Wibberg D, Schneiker-Bekel S, Bednarz H, Niehaus K, Zemke T, Persicke M, Puhler A, Kalinowski J., J. Biotechnol. 232(), 2016
PMID: 27181842
Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
Wolf T, Gren T, Thieme E, Wibberg D, Zemke T, Puhler A, Kalinowski J., J. Biotechnol. 231(), 2016
PMID: 27262504
Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Puhler A, Kalinowski J., J. Biotechnol. 251(), 2017
PMID: 28427920
Sequences involved in growth-phase-dependent expression and glucose repression of a Streptomyces alpha-amylase gene.
Virolle MJ, Gagnat J., Microbiology (Reading, Engl.) 140 ( Pt 5)(), 1994
PMID: 8025672
Complete genome sequence of the actinobacterium Streptomyces glaucescens GLA.O (DSM 40922) consisting of a linear chromosome and one linear plasmid.
Ortseifen V, Winkler A, Albersmeier A, Wendler S, Puhler A, Kalinowski J, Ruckert C., J. Biotechnol. 194(), 2014
PMID: 25499805
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin.
Gust B, Challis GL, Fowler K, Kieser T, Chater KF., Proc. Natl. Acad. Sci. U.S.A. 100(4), 2003
PMID: 12563033

AUTHOR UNKNOWN, 0
Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110.
Wendler S, Ortseifen V, Persicke M, Klein A, Neshat A, Niehaus K, Schneiker-Bekel S, Walter F, Wehmeier UF, Kalinowski J, Puhler A., J. Biotechnol. 191(), 2014
PMID: 25169663
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 125(), 2015
PMID: 25896738
Towards an understanding of protein-DNA recognition.
Rhodes D, Schwabe JW, Chapman L, Fairall L., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 351(1339), 1996
PMID: 8735272
Prokaryotic transcription regulators: more than just the helix-turn-helix motif.
Huffman JL, Brennan RG., Curr. Opin. Struct. Biol. 12(1), 2002
PMID: 11839496
A family of bacterial regulators homologous to Gal and Lac repressors.
Weickert MJ, Adhya S., J. Biol. Chem. 267(22), 1992
PMID: 1639817
Allostery in the LacI/GalR family: variations on a theme.
Swint-Kruse L, Matthews KS., Curr. Opin. Microbiol. 12(2), 2009
PMID: 19269243
Site-specific recombination strategies for engineering actinomycete genomes.
Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A., Appl. Environ. Microbiol. 78(6), 2012
PMID: 22247163
Genome engineering in actinomycetes using site-specific recombinases.
Myronovskyi M, Luzhetskyy A., Appl. Microbiol. Biotechnol. 97(11), 2013
PMID: 23584280
Marker removal from actinomycetes genome using Flp recombinase.
Fedoryshyn M, Petzke L, Welle E, Bechthold A, Luzhetskyy A., Gene 419(1-2), 2008
PMID: 18550297
Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B., Nat. Methods 5(7), 2008
PMID: 18516045
RNA-Seq: a revolutionary tool for transcriptomics.
Wang Z, Gerstein M, Snyder M., Nat. Rev. Genet. 10(1), 2009
PMID: 19015660
The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis.
van Wezel GP, White J, Bibb MJ, Postma PW., Mol. Gen. Genet. 254(5), 1997
PMID: 9197422
Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene.
Nguyen J, Francou F, Virolle MJ, Guerineau M., J. Bacteriol. 179(20), 1997
PMID: 9335287
The regulatory protein Reg1 of Streptomyces lividans binds the promoter region of several genes repressed by glucose
Nguyen J., 1999
Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae.
Afzal M, Shafeeq S, Manzoor I, Kuipers OP., PLoS ONE 10(6), 2015
PMID: 26030923
Chapter 19 Enzymology of Aminoglycoside Biosynthesis—Deduction from Gene Clusters
Wehmeier UF, Piepersberg W., 2009
Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50.
Hemker M, Stratmann A, Goeke K, Schroder W, Lenz J, Piepersberg W, Pape H., J. Bacteriol. 183(15), 2001
PMID: 11443082
Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.
Lewis M, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, Brennan RG, Lu P., Science 271(5253), 1996
PMID: 8638105
Lactose Repressor Protein: Functional Properties and Structure
Matthews KS, Nichols JC., 1998
The three operators of the lac operon cooperate in repression.
Oehler S, Eismann ER, Kramer H, Muller-Hill B., EMBO J. 9(4), 1990
PMID: 2182324
Interconvertible lac repressor-DNA loops revealed by single-molecule experiments.
Wong OK, Guthold M, Erie DA, Gelles J., PLoS Biol. 6(9), 2008
PMID: 18828671
Tetramer opening in LacI-mediated DNA looping.
Rutkauskas D, Zhan H, Matthews KS, Pavone FS, Vanzi F., Proc. Natl. Acad. Sci. U.S.A. 106(39), 2009
PMID: 19805348
Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation.
Boos W, Shuman H., Microbiol. Mol. Biol. Rev. 62(1), 1998
PMID: 9529892
Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
Seibold GM, Wurst M, Eikmanns BJ., Microbiology (Reading, Engl.) 155(Pt 2), 2009
PMID: 19202084
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051

Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA., 2000
Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.
Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE., Gene 116(1), 1992
PMID: 1628843
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes
Muth G, Nußbaumer B, Wohlleben W, Pühler A., 1989
The Pfam protein families database: towards a more sustainable future.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A., Nucleic Acids Res. 44(D1), 2015
PMID: 26673716
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A., Bioinformatics 28(12), 2012
PMID: 22543367
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28743243
PubMed | Europe PMC

Suchen in

Google Scholar