Effects of force detecting sense organs on muscle synergies are correlated with their response properties

Zill S, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A (2017)
Arthropod Structure & Development 46(4): 564-578.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zill, Sasha; Neff, David; Chaudhry, Sumaiya; Exter, AnnelieUniBi; Schmitz, JosefUniBi ; Büschges, Ansgar
Erscheinungsjahr
2017
Zeitschriftentitel
Arthropod Structure & Development
Band
46
Ausgabe
4
Seite(n)
564-578
ISSN
1467-8039
eISSN
1873-5495
Page URI
https://pub.uni-bielefeld.de/record/2911910

Zitieren

Zill S, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A. Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development. 2017;46(4):564-578.
Zill, S., Neff, D., Chaudhry, S., Exter, A., Schmitz, J., & Büschges, A. (2017). Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development, 46(4), 564-578. doi:10.1016/j.asd.2017.05.004
Zill, S., Neff, D., Chaudhry, S., Exter, A., Schmitz, J., and Büschges, A. (2017). Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development 46, 564-578.
Zill, S., et al., 2017. Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development, 46(4), p 564-578.
S. Zill, et al., “Effects of force detecting sense organs on muscle synergies are correlated with their response properties”, Arthropod Structure & Development, vol. 46, 2017, pp. 564-578.
Zill, S., Neff, D., Chaudhry, S., Exter, A., Schmitz, J., Büschges, A.: Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development. 46, 564-578 (2017).
Zill, Sasha, Neff, David, Chaudhry, Sumaiya, Exter, Annelie, Schmitz, Josef, and Büschges, Ansgar. “Effects of force detecting sense organs on muscle synergies are correlated with their response properties”. Arthropod Structure & Development 46.4 (2017): 564-578.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626

83 References

Daten bereitgestellt von Europe PubMed Central.

The Role of Sensory Signals for Interjoint Coordination in Stick Insect Legs (Carausius morosus and Cuniculina impigra)
Akay T., 2002
The comparative investigation of the stick insect and cockroach models in the study of insect locomotion
Ayali A, Borgmann A, Büschges A, Couzin-Fuchs E, Daun-Gruhn S, Holmes P., 2015

Bässler U., 1983
Interruption of searching movements of partly restrained front legs of stick insects, a model situation for the start of a stance phase?
Bässler U, Rohrbacher J, Karg G, Breutel G., 1991
Computer-assisted 3D kinematic analysis of all leg joints in walking insects.
Bender JA, Simpson EM, Ritzmann RE., PLoS ONE 5(10), 2010
PMID: 21049024
The thoracic muscles of the cockroach Periplaneta americana (L.)
Carbonell CS., 1947
Autotomy
Cardé RT., 2009
Form and role of deformation in excitation of an insect mechanoreceptor.
Chapman KM, Duckrow RB, Moran DT., Nature 244(5416), 1973
PMID: 4582504
Common muscle synergies for balance and walking.
Chvatal SA, Ting LH., Front Comput Neurosci 7(), 2013
PMID: 23653605
Movement of joint angles in the legs of a walking insect, Carausius morosus
Cruse H, Bartling Ch., 1995
Joint torques in a freely walking stick insect reveal distinct functions of leg joints in propulsion and postural control
Dallmann CJ, Dürr V, Schmitz J., 2016
An isolated leg’s passive recovery from dorso-ventral perturbations
Dudek DM, Full RJ., 2009
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
The flexion synergy, mother of all synergies and father of new models of gait.
Duysens J, De Groote F, Jonkers I., Front Comput Neurosci 7(), 2013
PMID: 23494365
Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents.
ECCLES JC, ECCLES RM, LUNDBERG A., J. Physiol. (Lond.) 138(2), 1957
PMID: 13526123
Gimbals in the insect leg.
Frantsevich L, Wang W., Arthropod Struct Dev 38(1), 2008
PMID: 18765299
Elasticity and movements of the cockroach tarsus in walking
Frazier S, Larsen G, Neff D, Quimby L, Carney M, DiCaprio R, Zill S., 1999
Campaniform sensilla of Calliphora vicina (Insecta, Diptera)
Gnatzy W, Grünert U, Bender M., 1987
A novel computational framework for deducing muscle synergies from experimental joint moments.
Gopalakrishnan A, Modenese L, Phillips AT., Front Comput Neurosci 8(), 2014
PMID: 25520645
Biological attachment devices: exploring nature’s diversity for biomimetics
Gorb SN., 2008
Multipolar stretch receptors and the insect leg reflex
Guthrie DM., 1967
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Shared reflex pathways of group I afferents of different cat hind-limb muscles.
Harrison PJ, Jankowska E, Johannisson T., J. Physiol. (Lond.) 338(), 1983
PMID: 6308242
A neural basis for motor primitives in the spinal cord.
Hart CB, Giszter SF., J. Neurosci. 30(4), 2010
PMID: 20107059
How insect flight steering muscles work.
Hedenstrom A., PLoS Biol. 12(3), 2014
PMID: 24667632

Higdon A, Ohlsen EH, Stiles WB, Weese JA., 1967
Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra
Hofmann T, Bässler U., 1982
The coordination of insect movements. I The walking movements of insects
Hughes GM., 1952
The proprioceptive function of a complex chordotonal organ associated with the mesothoracic coxa in locusts
Hustert R., 1982
Structure and function of the elastic organ in the tibia of a tenebrionid beetle.
Ichikawa T, Toh Y, Sakamoto H., Naturwissenschaften 103(5-6), 2016
PMID: 27118185
Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception.
Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JK, Lu ES, Mahadevan L, de Bivort B., J. Exp. Biol. 219(Pt 11), 2016
PMID: 26994176
Force sensors in hexapod locomotion
Kaliyamoorthy S, Zill SN, Quinn RD., 2006
Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches
Keller BR, Duke EF, Amer AS, Zill SN., 2007
Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.
Kistemaker DA, Van Soest AJ, Wong JD, Kurtzer I, Gribble PL., J. Neurophysiol. 109(4), 2012
PMID: 23100138
Sensory organs of the thoracic legs of the moth Manduca sexta
Kent KS, Griffin LM., 1990
Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input.
Laine CM, Martinez-Valdes E, Falla D, Mayer F, Farina D., J. Neurosci. 35(35), 2015
PMID: 26338331
The organization and role during locomotion of the proximal musculature of the cricket foreleg. I Anatomy and innervation
Laurent G, Richard D., 1986
Autotomy in a stick insect (Insecta: Phasmida): predation versus molting
Maginnis TM., 2008
Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster.
Mendes CS, Rajendren SV, Bartos I, Marka S, Mann RS., PLoS ONE 9(10), 2014
PMID: 25350743
The fine structure of cockroach campaniform sensilla.
Moran DT, Chapman KM, Ellis RA., J. Cell Biol. 48(1), 1971
PMID: 5545101
Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches
Noah JA, Quimby L, Frazier SF, Zill SN., 2004
The implications of force feedback for the lambda model.
Nichols R, Ross KT., Adv. Exp. Med. Biol. 629(), 2009
PMID: 19227527
External proprioceptors on the legs of insects of higher order
Petryszak A, Fudalewicz-Niemczyk A., 1994
A cockroach that jumps.
Picker M, Colville JF, Burrows M., Biol. Lett. 8(3), 2011
PMID: 22158737
Proprioception in insects. II the action of the campaniform sensilla on the legs
Pringle JWS., 1938
Control of locomotion in hexapods
Ritzmann RE, Zill SN., 2017
(How) do animals know how much they weigh?
Schilder RJ., J. Exp. Biol. 219(Pt 9), 2016
PMID: 27208031
Funktionsmorphologische Untersuchungen zur Autotomie der Stabheuschrecke Carausius morosus Br
Schindler G., 1979
Rhythmic activity in a motor axon induced by axotomy.
Schmidt J, Grund M., Neuroreport 14(9), 2003
PMID: 12824773
The depressor trochanteris motoneurones and their role in the coxotrochanteral feedback loop in the stick insect Carausius morosus
Schmitz J., 1986
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz J., 1993
An improved electrode design for en passant recording from small nerves
Schmitz J, Büschges A, Delcomyn F., 1988
Central projections of leg sense organs in Carausius morosus (Insecta, Phasmida)
Schmitz J, Dean J, Kittmann R., 1991
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Buschges A., J. Neurophysiol. 113(7), 2015
PMID: 25652931
Neuro-mechanical model of praying mantis explores the role of descending commands in pre-strike pivots
Szczecinski NS, Martin JP, Bertsch D, Ritzmann RE, Quinn RD., 2015
Control of obstacle climbing in the cockroach, Blaberus discoidalis
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., 2002
A rubber-like protein in insect cuticle
Weis-Fogh T., 1960
Screenbot: walking inverted using distributed inward gripping
Wile GD, Daltorio KA, Diller ED, Palmer LR, Gorb SN, Ritzmann RE, Quinn RD., 2008
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus
Zill S, Büschges A, Schmitz J., 2011
Positive force feedback in development of substrate grip in the stick insect tarsus.
Zill SN, Chaudhry S, Exter A, Buschges A, Schmitz J., Arthropod Struct Dev 43(5), 2014
PMID: 24951882
Force feedback reinforces muscle synergies in insect legs.
Zill SN, Chaudhry S, Buschges A, Schmitz J., Arthropod Struct Dev 44(6 Pt A), 2015
PMID: 26193626
Common Mechanisms and Specializations in Force Detection and Control in Cockroaches, Stick Insects and Drosophila
Zill SN, Büschges A, Schmitz J, Neff D, Chaudhry S., 2015
Three-dimensional graphic reconstruction of the insect exoskeleton through confocal imaging of endogenous fluorescence.
Zill S, Frazier SF, Neff D, Quimby L, Carney M, DiCaprio R, Thuma J, Norton M., Microsc. Res. Tech. 48(6), 2000
PMID: 10738318
Load signalling by cockroach trochanteral campaniform sensilla.
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28552666
PubMed | Europe PMC

Suchen in

Google Scholar