Effects of force detecting sense organs on muscle synergies are correlated with their response properties
Zill S, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A (2017)
Arthropod Structure & Development 46(4): 564-578.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zill, Sasha;
Neff, David;
Chaudhry, Sumaiya;
Exter, AnnelieUniBi;
Schmitz, JosefUniBi ;
Büschges, Ansgar
Einrichtung
Erscheinungsjahr
2017
Zeitschriftentitel
Arthropod Structure & Development
Band
46
Ausgabe
4
Seite(n)
564-578
ISSN
1467-8039
eISSN
1873-5495
Page URI
https://pub.uni-bielefeld.de/record/2911910
Zitieren
Zill S, Neff D, Chaudhry S, Exter A, Schmitz J, Büschges A. Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development. 2017;46(4):564-578.
Zill, S., Neff, D., Chaudhry, S., Exter, A., Schmitz, J., & Büschges, A. (2017). Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development, 46(4), 564-578. https://doi.org/10.1016/j.asd.2017.05.004
Zill, Sasha, Neff, David, Chaudhry, Sumaiya, Exter, Annelie, Schmitz, Josef, and Büschges, Ansgar. 2017. “Effects of force detecting sense organs on muscle synergies are correlated with their response properties”. Arthropod Structure & Development 46 (4): 564-578.
Zill, S., Neff, D., Chaudhry, S., Exter, A., Schmitz, J., and Büschges, A. (2017). Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development 46, 564-578.
Zill, S., et al., 2017. Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development, 46(4), p 564-578.
S. Zill, et al., “Effects of force detecting sense organs on muscle synergies are correlated with their response properties”, Arthropod Structure & Development, vol. 46, 2017, pp. 564-578.
Zill, S., Neff, D., Chaudhry, S., Exter, A., Schmitz, J., Büschges, A.: Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Structure & Development. 46, 564-578 (2017).
Zill, Sasha, Neff, David, Chaudhry, Sumaiya, Exter, Annelie, Schmitz, Josef, and Büschges, Ansgar. “Effects of force detecting sense organs on muscle synergies are correlated with their response properties”. Arthropod Structure & Development 46.4 (2017): 564-578.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
4 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms.
Bidaye SS, Bockemühl T, Büschges A., J Neurophysiol 119(2), 2018
PMID: 29070634
Bidaye SS, Bockemühl T, Büschges A., J Neurophysiol 119(2), 2018
PMID: 29070634
Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster.
Schilder RJ, Raynor M., J Exp Biol 220(pt 19), 2017
PMID: 28978639
Schilder RJ, Raynor M., J Exp Biol 220(pt 19), 2017
PMID: 28978639
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
83 References
Daten bereitgestellt von Europe PubMed Central.
The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint.
Akay T, Bassler U, Gerharz P, Buschges A., J. Neurophysiol. 85(2), 2001
PMID: 11160496
Akay T, Bassler U, Gerharz P, Buschges A., J. Neurophysiol. 85(2), 2001
PMID: 11160496
The Role of Sensory Signals for Interjoint Coordination in Stick Insect Legs (Carausius morosus and Cuniculina impigra)
Akay T., 2002
Akay T., 2002
The comparative investigation of the stick insect and cockroach models in the study of insect locomotion
Ayali A, Borgmann A, Büschges A, Couzin-Fuchs E, Daun-Gruhn S, Holmes P., 2015
Ayali A, Borgmann A, Büschges A, Couzin-Fuchs E, Daun-Gruhn S, Holmes P., 2015
Bässler U., 1983
Interruption of searching movements of partly restrained front legs of stick insects, a model situation for the start of a stance phase?
Bässler U, Rohrbacher J, Karg G, Breutel G., 1991
Bässler U, Rohrbacher J, Karg G, Breutel G., 1991
Computer-assisted 3D kinematic analysis of all leg joints in walking insects.
Bender JA, Simpson EM, Ritzmann RE., PLoS ONE 5(10), 2010
PMID: 21049024
Bender JA, Simpson EM, Ritzmann RE., PLoS ONE 5(10), 2010
PMID: 21049024
Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking.
Burrows M, Sutton GP., J. Exp. Biol. 215(Pt 19), 2012
PMID: 22693029
Burrows M, Sutton GP., J. Exp. Biol. 215(Pt 19), 2012
PMID: 22693029
The thoracic muscles of the cockroach Periplaneta americana (L.)
Carbonell CS., 1947
Carbonell CS., 1947
Autotomy
Cardé RT., 2009
Cardé RT., 2009
Form and role of deformation in excitation of an insect mechanoreceptor.
Chapman KM, Duckrow RB, Moran DT., Nature 244(5416), 1973
PMID: 4582504
Chapman KM, Duckrow RB, Moran DT., Nature 244(5416), 1973
PMID: 4582504
Common muscle synergies for balance and walking.
Chvatal SA, Ting LH., Front Comput Neurosci 7(), 2013
PMID: 23653605
Chvatal SA, Ting LH., Front Comput Neurosci 7(), 2013
PMID: 23653605
Movement of joint angles in the legs of a walking insect, Carausius morosus
Cruse H, Bartling Ch., 1995
Cruse H, Bartling Ch., 1995
Joint torques in a freely walking stick insect reveal distinct functions of leg joints in propulsion and postural control
Dallmann CJ, Dürr V, Schmitz J., 2016
Dallmann CJ, Dürr V, Schmitz J., 2016
Motor patterns for horizontal and upside down walking and vertical climbing in the locust
Duch C, PflÜGer H., J. Exp. Biol. 198(Pt 9), 1995
PMID: 9319873
Duch C, PflÜGer H., J. Exp. Biol. 198(Pt 9), 1995
PMID: 9319873
An isolated leg’s passive recovery from dorso-ventral perturbations
Dudek DM, Full RJ., 2009
Dudek DM, Full RJ., 2009
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
The flexion synergy, mother of all synergies and father of new models of gait.
Duysens J, De Groote F, Jonkers I., Front Comput Neurosci 7(), 2013
PMID: 23494365
Duysens J, De Groote F, Jonkers I., Front Comput Neurosci 7(), 2013
PMID: 23494365
Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents.
ECCLES JC, ECCLES RM, LUNDBERG A., J. Physiol. (Lond.) 138(2), 1957
PMID: 13526123
ECCLES JC, ECCLES RM, LUNDBERG A., J. Physiol. (Lond.) 138(2), 1957
PMID: 13526123
Elasticity and movements of the cockroach tarsus in walking
Frazier S, Larsen G, Neff D, Quimby L, Carney M, DiCaprio R, Zill S., 1999
Frazier S, Larsen G, Neff D, Quimby L, Carney M, DiCaprio R, Zill S., 1999
Campaniform sensilla of Calliphora vicina (Insecta, Diptera)
Gnatzy W, Grünert U, Bender M., 1987
Gnatzy W, Grünert U, Bender M., 1987
A novel computational framework for deducing muscle synergies from experimental joint moments.
Gopalakrishnan A, Modenese L, Phillips AT., Front Comput Neurosci 8(), 2014
PMID: 25520645
Gopalakrishnan A, Modenese L, Phillips AT., Front Comput Neurosci 8(), 2014
PMID: 25520645
Biological attachment devices: exploring nature’s diversity for biomimetics
Gorb SN., 2008
Gorb SN., 2008
Multipolar stretch receptors and the insect leg reflex
Guthrie DM., 1967
Guthrie DM., 1967
The flexible recruitment of muscle synergies depends on the required force-generating capability.
Hagio S, Kouzaki M., J. Neurophysiol. 112(2), 2014
PMID: 24790166
Hagio S, Kouzaki M., J. Neurophysiol. 112(2), 2014
PMID: 24790166
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Shared reflex pathways of group I afferents of different cat hind-limb muscles.
Harrison PJ, Jankowska E, Johannisson T., J. Physiol. (Lond.) 338(), 1983
PMID: 6308242
Harrison PJ, Jankowska E, Johannisson T., J. Physiol. (Lond.) 338(), 1983
PMID: 6308242
A neural basis for motor primitives in the spinal cord.
Hart CB, Giszter SF., J. Neurosci. 30(4), 2010
PMID: 20107059
Hart CB, Giszter SF., J. Neurosci. 30(4), 2010
PMID: 20107059
Higdon A, Ohlsen EH, Stiles WB, Weese JA., 1967
Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra
Hofmann T, Bässler U., 1982
Hofmann T, Bässler U., 1982
Response characteristics of single trochanteral campaniform sensilla in the stick insect, Cuniculina impigra.
Hofmann T, Bassler U., Physiol. Entomol. 11(1), 1986
PMID: IND87054479
Hofmann T, Bassler U., Physiol. Entomol. 11(1), 1986
PMID: IND87054479
The coordination of insect movements. I The walking movements of insects
Hughes GM., 1952
Hughes GM., 1952
The proprioceptive function of a complex chordotonal organ associated with the mesothoracic coxa in locusts
Hustert R., 1982
Hustert R., 1982
Structure and function of the elastic organ in the tibia of a tenebrionid beetle.
Ichikawa T, Toh Y, Sakamoto H., Naturwissenschaften 103(5-6), 2016
PMID: 27118185
Ichikawa T, Toh Y, Sakamoto H., Naturwissenschaften 103(5-6), 2016
PMID: 27118185
Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception.
Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JK, Lu ES, Mahadevan L, de Bivort B., J. Exp. Biol. 219(Pt 11), 2016
PMID: 26994176
Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JK, Lu ES, Mahadevan L, de Bivort B., J. Exp. Biol. 219(Pt 11), 2016
PMID: 26994176
Force sensors in hexapod locomotion
Kaliyamoorthy S, Zill SN, Quinn RD., 2006
Kaliyamoorthy S, Zill SN, Quinn RD., 2006
Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
Kargo WJ, Giszter SF., J. Neurophysiol. 83(3), 2000
PMID: 10712474
Kargo WJ, Giszter SF., J. Neurophysiol. 83(3), 2000
PMID: 10712474
Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches
Keller BR, Duke EF, Amer AS, Zill SN., 2007
Keller BR, Duke EF, Amer AS, Zill SN., 2007
Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.
Kistemaker DA, Van Soest AJ, Wong JD, Kurtzer I, Gribble PL., J. Neurophysiol. 109(4), 2012
PMID: 23100138
Kistemaker DA, Van Soest AJ, Wong JD, Kurtzer I, Gribble PL., J. Neurophysiol. 109(4), 2012
PMID: 23100138
Sensory organs of the thoracic legs of the moth Manduca sexta
Kent KS, Griffin LM., 1990
Kent KS, Griffin LM., 1990
Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input.
Laine CM, Martinez-Valdes E, Falla D, Mayer F, Farina D., J. Neurosci. 35(35), 2015
PMID: 26338331
Laine CM, Martinez-Valdes E, Falla D, Mayer F, Farina D., J. Neurosci. 35(35), 2015
PMID: 26338331
The organization and role during locomotion of the proximal musculature of the cricket foreleg. I Anatomy and innervation
Laurent G, Richard D., 1986
Laurent G, Richard D., 1986
Autotomy in a stick insect (Insecta: Phasmida): predation versus molting
Maginnis TM., 2008
Maginnis TM., 2008
Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster.
Mendes CS, Rajendren SV, Bartos I, Marka S, Mann RS., PLoS ONE 9(10), 2014
PMID: 25350743
Mendes CS, Rajendren SV, Bartos I, Marka S, Mann RS., PLoS ONE 9(10), 2014
PMID: 25350743
Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy.
Michels J, Gorb SN., J Microsc 245(1), 2012
PMID: 22142031
Michels J, Gorb SN., J Microsc 245(1), 2012
PMID: 22142031
The fine structure of cockroach campaniform sensilla.
Moran DT, Chapman KM, Ellis RA., J. Cell Biol. 48(1), 1971
PMID: 5545101
Moran DT, Chapman KM, Ellis RA., J. Cell Biol. 48(1), 1971
PMID: 5545101
Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini).
Nadein K, Betz O., J. Exp. Biol. 219(Pt 13), 2016
PMID: 27385755
Nadein K, Betz O., J. Exp. Biol. 219(Pt 13), 2016
PMID: 27385755
Identification of resilin in the leg of cockroach, Periplaneta americana: confirmation by a simple method using pH dependence of UV fluorescence.
Neff D, Frazier SF, Quimby L, Wang RT, Zill S., Arthropod Struct Dev 29(1), 2000
PMID: 18088915
Neff D, Frazier SF, Quimby L, Wang RT, Zill S., Arthropod Struct Dev 29(1), 2000
PMID: 18088915
Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches
Noah JA, Quimby L, Frazier SF, Zill SN., 2004
Noah JA, Quimby L, Frazier SF, Zill SN., 2004
Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat.
Nichols TR., J. Neurophysiol. 81(2), 1999
PMID: 10036251
Nichols TR., J. Neurophysiol. 81(2), 1999
PMID: 10036251
The implications of force feedback for the lambda model.
Nichols R, Ross KT., Adv. Exp. Med. Biol. 629(), 2009
PMID: 19227527
Nichols R, Ross KT., Adv. Exp. Med. Biol. 629(), 2009
PMID: 19227527
Innervation of coxal depressor muscles in the cockroach, Periplaneta americana.
Pearson KG, Iles JF., J. Exp. Biol. 54(1), 1971
PMID: 5549764
Pearson KG, Iles JF., J. Exp. Biol. 54(1), 1971
PMID: 5549764
External proprioceptors on the legs of insects of higher order
Petryszak A, Fudalewicz-Niemczyk A., 1994
Petryszak A, Fudalewicz-Niemczyk A., 1994
Proprioception in insects. II the action of the campaniform sensilla on the legs
Pringle JWS., 1938
Pringle JWS., 1938
Control of locomotion in hexapods
Ritzmann RE, Zill SN., 2017
Ritzmann RE, Zill SN., 2017
Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
Rosenbaum P, Wosnitza A, Buschges A, Gruhn M., J. Neurophysiol. 104(3), 2010
PMID: 20668273
Rosenbaum P, Wosnitza A, Buschges A, Gruhn M., J. Neurophysiol. 104(3), 2010
PMID: 20668273
Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat.
Ross KT, Nichols TR., J. Neurophysiol. 101(1), 2008
PMID: 19005003
Ross KT, Nichols TR., J. Neurophysiol. 101(1), 2008
PMID: 19005003
Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error.
Safavynia SA, Ting LH., J. Neurophysiol. 110(6), 2013
PMID: 23803325
Safavynia SA, Ting LH., J. Neurophysiol. 110(6), 2013
PMID: 23803325
(How) do animals know how much they weigh?
Schilder RJ., J. Exp. Biol. 219(Pt 9), 2016
PMID: 27208031
Schilder RJ., J. Exp. Biol. 219(Pt 9), 2016
PMID: 27208031
Funktionsmorphologische Untersuchungen zur Autotomie der Stabheuschrecke Carausius morosus Br
Schindler G., 1979
Schindler G., 1979
Rhythmic activity in a motor axon induced by axotomy.
Schmidt J, Grund M., Neuroreport 14(9), 2003
PMID: 12824773
Schmidt J, Grund M., Neuroreport 14(9), 2003
PMID: 12824773
The depressor trochanteris motoneurones and their role in the coxotrochanteral feedback loop in the stick insect Carausius morosus
Schmitz J., 1986
Schmitz J., 1986
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz J., 1993
Schmitz J., 1993
An improved electrode design for en passant recording from small nerves
Schmitz J, Büschges A, Delcomyn F., 1988
Schmitz J, Büschges A, Delcomyn F., 1988
Central projections of leg sense organs in Carausius morosus (Insecta, Phasmida)
Schmitz J, Dean J, Kittmann R., 1991
Schmitz J, Dean J, Kittmann R., 1991
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
Schmitz J, Gruhn M, Buschges A., J. Neurophysiol. 113(7), 2015
PMID: 25652931
Schmitz J, Gruhn M, Buschges A., J. Neurophysiol. 113(7), 2015
PMID: 25652931
Neuro-mechanical model of praying mantis explores the role of descending commands in pre-strike pivots
Szczecinski NS, Martin JP, Bertsch D, Ritzmann RE, Quinn RD., 2015
Szczecinski NS, Martin JP, Bertsch D, Ritzmann RE, Quinn RD., 2015
A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.
Toth TI, Schmidt J, Buschges A, Daun-Gruhn S., PLoS ONE 8(11), 2013
PMID: 24244298
Toth TI, Schmidt J, Buschges A, Daun-Gruhn S., PLoS ONE 8(11), 2013
PMID: 24244298
Control of obstacle climbing in the cockroach, Blaberus discoidalis
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., 2002
Watson JT, Ritzmann RE, Zill SN, Pollack AJ., 2002
A rubber-like protein in insect cuticle
Weis-Fogh T., 1960
Weis-Fogh T., 1960
Screenbot: walking inverted using distributed inward gripping
Wile GD, Daltorio KA, Diller ED, Palmer LR, Gorb SN, Ritzmann RE, Quinn RD., 2008
Wile GD, Daltorio KA, Diller ED, Palmer LR, Gorb SN, Ritzmann RE, Quinn RD., 2008
Expression of the rubber-like protein, resilin, in developing and functional insect cuticle determined using a Drosophila anti-Rec 1 resilin antibody.
Wong DC, Pearson RD, Elvin CM, Merritt DJ., Dev. Dyn. 241(2), 2012
PMID: 22275226
Wong DC, Pearson RD, Elvin CM, Merritt DJ., Dev. Dyn. 241(2), 2012
PMID: 22275226
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus
Zill S, Büschges A, Schmitz J., 2011
Zill S, Büschges A, Schmitz J., 2011
Positive force feedback in development of substrate grip in the stick insect tarsus.
Zill SN, Chaudhry S, Exter A, Buschges A, Schmitz J., Arthropod Struct Dev 43(5), 2014
PMID: 24951882
Zill SN, Chaudhry S, Exter A, Buschges A, Schmitz J., Arthropod Struct Dev 43(5), 2014
PMID: 24951882
Force feedback reinforces muscle synergies in insect legs.
Zill SN, Chaudhry S, Buschges A, Schmitz J., Arthropod Struct Dev 44(6 Pt A), 2015
PMID: 26193626
Zill SN, Chaudhry S, Buschges A, Schmitz J., Arthropod Struct Dev 44(6 Pt A), 2015
PMID: 26193626
Common Mechanisms and Specializations in Force Detection and Control in Cockroaches, Stick Insects and Drosophila
Zill SN, Büschges A, Schmitz J, Neff D, Chaudhry S., 2015
Zill SN, Büschges A, Schmitz J, Neff D, Chaudhry S., 2015
Three-dimensional graphic reconstruction of the insect exoskeleton through confocal imaging of endogenous fluorescence.
Zill S, Frazier SF, Neff D, Quimby L, Carney M, DiCaprio R, Thuma J, Norton M., Microsc. Res. Tech. 48(6), 2000
PMID: 10738318
Zill S, Frazier SF, Neff D, Quimby L, Carney M, DiCaprio R, Thuma J, Norton M., Microsc. Res. Tech. 48(6), 2000
PMID: 10738318
Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
Zill SN, Keller BR, Duke ER., J. Neurophysiol. 101(5), 2009
PMID: 19261716
Zill SN, Keller BR, Duke ER., J. Neurophysiol. 101(5), 2009
PMID: 19261716
Load signalling by cockroach trochanteral campaniform sensilla.
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 28552666
PubMed | Europe PMC
Suchen in