Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis

Hersemann L, Wibberg D, Blom J, Goesmann A, Widmer F, Vorhölter F-J, Koelliker R (2017)
BMC GENOMICS 18(1): 35.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Hersemann, Lena; Wibberg, DanielUniBi; Blom, Jochen; Goesmann, Alexander; Widmer, Franco; Vorhölter, Frank-JörgUniBi; Koelliker, Roland
Abstract / Bemerkung
Background: Xanthomonas translucens pathovars differ in their individual host ranges among Poaceae. As the causal agent of bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.), X. translucens pv. graminis (Xtg) is one of the most important bacterial pathogens in temperate grassland regions. The genomes of six Xtg strains from Switzerland, Norway, and New Zealand were sequenced in order to gain insight into conserved genomic traits from organisms covering a wide geographical range. Subsequent comparative analysis with previously published genome data of seven non-graminis X. translucens strains including the pathovars arrhenatheri, poae, phlei, cerealis, undulosa, and translucens was conducted to identify candidate genes linked to the host adaptation of Xtg to Italian ryegrass. Results: Phylogenetic analysis revealed a tight clustering of Xtg strains, which were found to share a large core genome. Conserved genomic traits included a non-canonical type III secretion system (T3SS) and a type IV pilus (T4P), which both revealed distinct primary structures of the pilins when compared to the non-graminis X. translucens strains. Xtg-specific traits that had no homologues in the other X. translucens strains were further found to comprise several hypothetical proteins, a TonB-dependent receptor, transporters, and effector proteins as well as toxin-antitoxin systems and DNA methyltransferases. While a nearly complete flagellar gene cluster was identified in one of the sequenced Xtg strains, phenotypic analysis pointed to swimming-deficiency as a common trait of the pathovar graminis. Conclusion: Our study suggests that host adaptation of X. translucens pv. graminis may be conferred by a combination of pathovar-specific effector proteins, regulatory mechanisms, and adapted nutrient acquisition. Sequence deviations of pathogen-associated molecular patterns (PAMPs), as observed for the pilins of the T4P and T3SS, are moreover likely to impede perception by the plant defense machinery and thus facilitate successful host colonization of Italian ryegrass.
Inter-pathovar comparison; Type VI secretion system; LPS O-antigen; HrpE; PilA
Page URI


Hersemann L, Wibberg D, Blom J, et al. Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC GENOMICS. 2017;18(1): 35.
Hersemann, L., Wibberg, D., Blom, J., Goesmann, A., Widmer, F., Vorhölter, F. - J., & Koelliker, R. (2017). Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC GENOMICS, 18(1), 35. doi:10.1186/s12864-016-3422-7
Hersemann, Lena, Wibberg, Daniel, Blom, Jochen, Goesmann, Alexander, Widmer, Franco, Vorhölter, Frank-Jörg, and Koelliker, Roland. 2017. “Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis”. BMC GENOMICS 18 (1): 35.
Hersemann, L., Wibberg, D., Blom, J., Goesmann, A., Widmer, F., Vorhölter, F. - J., and Koelliker, R. (2017). Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC GENOMICS 18:35.
Hersemann, L., et al., 2017. Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC GENOMICS, 18(1): 35.
L. Hersemann, et al., “Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis”, BMC GENOMICS, vol. 18, 2017, : 35.
Hersemann, L., Wibberg, D., Blom, J., Goesmann, A., Widmer, F., Vorhölter, F.-J., Koelliker, R.: Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis. BMC GENOMICS. 18, : 35 (2017).
Hersemann, Lena, Wibberg, Daniel, Blom, Jochen, Goesmann, Alexander, Widmer, Franco, Vorhölter, Frank-Jörg, and Koelliker, Roland. “Comparative genomics of host adaptive traits in Xanthomonas translucens pv. graminis”. BMC GENOMICS 18.1 (2017): 35.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Pooled DNA sequencing to identify SNPs associated with a major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.).
Knorst V, Byrne S, Yates S, Asp T, Widmer F, Studer B, Kölliker R., Theor Appl Genet 132(4), 2019
PMID: 30506318
Genetic Diversity and Virulence of Wheat and Barley Strains of Xanthomonas translucens from the Upper Midwestern United States.
Curland RD, Gao L, Bull CT, Vinatzer BA, Dill-Macky R, Van Eck L, Ishimaru CA., Phytopathology 108(4), 2018
PMID: 29165007
Horizontal gene transfer plays a major role in the pathological convergence of Xanthomonas lineages on common bean.
Chen NWG, Serres-Giardi L, Ruh M, Briand M, Bonneau S, Darrasse A, Barbe V, Gagnevin L, Koebnik R, Jacques MA., BMC Genomics 19(1), 2018
PMID: 30103675
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data.
Alkhateeb RS, Rückert C, Rupp O, Pucker B, Hublik G, Wibberg D, Niehaus K, Pühler A, Vorhölter FJ., J Biotechnol 253(), 2017
PMID: 28506932

87 References

Daten bereitgestellt von Europe PubMed Central.

The hosts of Xanthomonas
Hayward AC., 1993
Bacterial wilt, a new forage grass disease
Egli T, Goto M, Schmidt D., 1975
Pathogenic variation among the causal agents of bacterial wilt of forage grasses
Egli T, Schmidt D., 1982
Resistance to bacterial wilt (Xanthomonas graminis) increases yield and persistency of Lolium multiflorum
Schmidt D, Neusch B., 1980
Ecotypes of Italian ryegrass from Swiss permanent grassland outperform current recommended cultivars
Boller Beat, Peter-Schmid MadlainaKI, Tresch Eliane, Tanner Peter, Schubiger FranzXaver., Euphytica 170(1-2), 2009
PMID: IND44271345
Bacterial disease resistance in Arabidopsis through flagellin perception.
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T., Nature 428(6984), 2004
PMID: 15085136
How Xanthomonas type III effectors manipulate the host plant.
Kay S, Bonas U., Curr. Opin. Microbiol. 12(1), 2009
PMID: 19168386
Characterization of the nonconserved hpaB-hrpF region in the hrp pathogenicity island from Xanthomonas campestris pv. vesicatoria.
Buttner D, Noel L, Stuttmann J, Bonas U., Mol. Plant Microbe Interact. 20(9), 2007
PMID: 17849709
The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection.
Wichmann F, Vorholter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kolliker R., Mol. Plant Pathol. 14(6), 2013
PMID: 23578314
Common themes in microbial pathogenicity revisited.
Finlay BB, Falkow S., Microbiol. Mol. Biol. Rev. 61(2), 1997
PMID: 9184008
High-Quality Draft Genome Sequence of the Xanthomonas translucens pv. cerealis Pathotype Strain CFBP 2541.
Pesce C, Bolot S, Cunnac S, Portier P, Fischer-Le Saux M, Jacques MA, Gagnevin L, Arlat M, Noel LD, Carrere S, Bragard C, Koebnik R., Genome Announc 3(1), 2015
PMID: 25676771
Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens.
Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, Liu Z, White FF, Liu S., BMC Genomics 17(), 2016
PMID: 26729225

Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems.
Gardiner DM, Upadhyaya NM, Stiller J, Ellis JG, Dodds PN, Kazan K, Manners JM., PLoS ONE 9(1), 2014
PMID: 24416331
Bacterial pathogens of Gramineae: systematic review and assessment of quarantine status for the EPPO region
Paul VH, Smith IM., 1989
Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis.
Kolliker R, Kraehenbuehl R, Boller B, Widmer F., Syst. Appl. Microbiol. 29(2), 2005
PMID: 16464692

Field guide to next-generation DNA sequencers.
Glenn TC., Mol Ecol Resour 11(5), 2011
PMID: 21592312
Summarizing and correcting the GC content bias in high-throughput sequencing.
Benjamini Y, Speed TP., Nucleic Acids Res. 40(10), 2012
PMID: 22323520
Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes.
Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, Puhler A, Fogelqvist J, Varrelmann M, Schluter A, Dixelius C., BMC Genomics 17(), 2016
PMID: 26988094
Conveyor: a workflow engine for bioinformatic analyses.
Linke B, Giegerich R, Goesmann A., Bioinformatics 27(7), 2011
PMID: 21278189
Prodigal: prokaryotic gene recognition and translation initiation site identification.
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ., BMC Bioinformatics 11(), 2010
PMID: 20211023
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW., Nucleic Acids Res. 35(9), 2007
PMID: 17452365
ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences.
Laslett D, Canback B., Nucleic Acids Res. 32(1), 2004
PMID: 14704338
EDGAR 2.0: an enhanced software platform for comparative gene content analyses.
Blom J, Kreis J, Spanig S, Juhre T, Bertelli C, Ernst C, Goesmann A., Nucleic Acids Res. 44(W1), 2016
PMID: 27098043
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M., Nucleic Acids Res. 31(1), 2003
PMID: 12520024
Pfam: the protein families database.
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24288371
NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.
Pruitt KD, Tatusova T, Maglott DR., Nucleic Acids Res. 35(Database issue), 2006
PMID: 17130148
Taxonomy of xanthomonads from cereals and grasses based on SDS-PAGE of proteins, fatty acid analysis and DNA hybridization
Vauterin L, Yang B, Hoste B, Pot B, Swings J, Kersters K., 1992
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
PHYLIP-phylogeny inference package (version 3.2)
Felsenstein J., 1989
Genomic insights that advance the species definition for prokaryotes.
Konstantinidis KT, Tiedje JM., Proc. Natl. Acad. Sci. U.S.A. 102(7), 2005
PMID: 15701695
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
CDD: NCBI's conserved domain database.
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25414356
SignalP 4.0: discriminating signal peptides from transmembrane regions.
Petersen TN, Brunak S, von Heijne G, Nielsen H., Nat. Methods 8(10), 2011
PMID: 21959131
Identification of surprisingly diverse type IV pili, across a broad range of gram-positive bacteria.
Imam S, Chen Z, Roos DS, Pohlschroder M., PLoS ONE 6(12), 2011
PMID: 22216142

Insertion sequences in prokaryotic genomes.
Siguier P, Filee J, Chandler M., Curr. Opin. Microbiol. 9(5), 2006
PMID: 16935554
SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J., Gigascience 1(1), 2012
PMID: 23587118
Draft Genome Sequence of Xanthomonas translucens pv. graminis Pathotype Strain CFBP 2053.
Pesce C, Bolot S, Berthelot E, Bragard C, Cunnac S, Fischer-Le Saux M, Portier P, Arlat M, Gagnevin L, Jacques MA, Noel LD, Carrere S, Koebnik R., Genome Announc 3(5), 2015
PMID: 26450740
Ralstonia solanacearum needs motility for invasive virulence on tomato.
Tans-Kersten J, Huang H, Allen C., J. Bacteriol. 183(12), 2001
PMID: 11371523
Epidemiological aspects of bacterial wilt of fodder grasses
Schmidt D., 1989
Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.
Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD., PLoS Pathog. 6(8), 2010
PMID: 20865170
Outer Membrane Proteins and Lipopolysaccharides in Pathovars of Xanthomonas campestris.
Ojanen T, Helander IM, Haahtela K, Korhonen TK, Laakso T., Appl. Environ. Microbiol. 59(12), 1993
PMID: 16349114
Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.
Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ., PLoS ONE 3(11), 2008
PMID: 19043590
Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence.
Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS., Mol. Plant Microbe Interact. 27(10), 2014
PMID: 25180689
Type IV pilus structure and bacterial pathogenicity.
Craig L, Pique ME, Tainer JA., Nat. Rev. Microbiol. 2(5), 2004
PMID: 15100690
The Xanthomonas type IV pilus.
Dunger G, Llontop E, Guzzo CR, Farah CS., Curr. Opin. Microbiol. 30(), 2016
PMID: 26874963
Positive selection of the Hrp pilin HrpE of the plant pathogen Xanthomonas.
Weber E, Koebnik R., J. Bacteriol. 188(4), 2006
PMID: 16452423
The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants.
Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U, Koebnik R., J. Bacteriol. 187(7), 2005
PMID: 15774889
A simple method for displaying the hydropathic character of a protein.
Kyte J, Doolittle RF., J. Mol. Biol. 157(1), 1982
PMID: 7108955
Essential genes are more evolutionarily conserved than are nonessential genes in bacteria.
Jordan IK, Rogozin IB, Wolf YI, Koonin EV., Genome Res. 12(6), 2002
PMID: 12045149
Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue.
Desvaux M, Hebraud M, Talon R, Henderson IR., Trends Microbiol. 17(4), 2009
PMID: 19299134
Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris.
Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL, He C., Genome Res. 15(6), 2005
PMID: 15899963
Identification of new candidate pathogenicity factors in the xylem-invading pathogen Xanthomonas albilineans by transposon mutagenesis.
Rott P, Fleites L, Marlow G, Royer M, Gabriel DW., Mol. Plant Microbe Interact. 24(5), 2011
PMID: 21190440
Genomic islands: tools of bacterial horizontal gene transfer and evolution.
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW., FEMS Microbiol. Rev. 33(2), 2008
PMID: 19178566
Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity.
Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ., Front Microbiol 6(), 2015
PMID: 26089818
Type II secretion: from structure to function.
Johnson TL, Abendroth J, Hol WG, Sandkvist M., FEMS Microbiol. Lett. 255(2), 2006
PMID: 16448494
Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria.
Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N, Vasse J, Lauber E, Arlat M., PLoS ONE 2(2), 2007
PMID: 17311090
Global virulence regulation networks in phytopathogenic bacteria.
Mole BM, Baltrus DA, Dangl JL, Grant SR., Trends Microbiol. 15(8), 2007
PMID: 17627825
Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range.
Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N., BMC Genomics 14(), 2013
PMID: 23941402
Roles of DNA adenine methylation in regulating bacterial gene expression and virulence.
Low DA, Weyand NJ, Mahan MJ., Infect. Immun. 69(12), 2001
PMID: 11705888
Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics.
Kim JS, Li J, Barnes IH, Baltzegar DA, Pajaniappan M, Cullen TW, Trent MS, Burns CM, Thompson SA., J. Bacteriol. 190(19), 2008
PMID: 18689478
Type II Toxin-Antitoxin Distribution and Adaptive Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri.
Martins PM, Machado MA, Silva NV, Takita MA, de Souza AA., Front Microbiol 7(), 2016
PMID: 27242687
AvrRxo1 Is a Bifunctional Type III Secreted Effector and Toxin-Antitoxin System Component with Homologs in Diverse Environmental Contexts.
Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, Leach JE., PLoS ONE 11(7), 2016
PMID: 27391081
Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A.
Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G, Jha G, Pandey A, Patil PB, Ishihara H, Meyer DF, Szurek B, Verdier V, Koebnik R, Dow JM, Ryan RP, Hirata H, Tsuyumu S, Won Lee S, Seo YS, Sriariyanum M, Ronald PC, Sonti RV, Van Sluys MA, Leach JE, White FF, Bogdanove AJ., BMC Genomics 9(), 2008
PMID: 18452608
Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads.
Darrasse A, Carrere S, Barbe V, Boureau T, Arrieta-Ortiz ML, Bonneau S, Briand M, Brin C, Cociancich S, Durand K, Fouteau S, Gagnevin L, Guerin F, Guy E, Indiana A, Koebnik R, Lauber E, Munoz A, Noel LD, Pieretti I, Poussier S, Pruvost O, Robene-Soustrade I, Rott P, Royer M, Serres-Giardi L, Szurek B, van Sluys MA, Verdier V, Verniere C, Arlat M, Manceau C, Jacques MA., BMC Genomics 14(), 2013
PMID: 24195767
Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide.
Katzen F, Becker A, Zorreguieta A, Puhler A, Ielpi L., J. Bacteriol. 178(14), 1996
PMID: 8763965

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28056815
PubMed | Europe PMC

Suchen in

Google Scholar