ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems

Schilling M, Cruse H (2017)
Frontiers in Neurorobotics 11: 3.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 3.22 MB
Abstract / Bemerkung
It has often been stated that for a neuronal system to become a cognitive one, it has to be large enough. In contrast, we argue that a basic property of a cognitive system, namely the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof of concept, we propose an artificial neural network, termed reaCog, that, first, is able to deal with a specific domain of behavior (six-legged-walking). Second, we show how a minor expansion of this system enables the system to plan ahead and deploy existing behavioral elements in novel contexts in order to solve current problems. To this end, the system invents new solutions that are not possible for the reactive network. Rather these solutions result from new combinations of given memory elements. This faculty does not rely on a dedicated system being more or less independent of the reactive basis, but results from exploitation of the reactive basis by recruiting the lower-level control structures in a way that motor planning becomes possible as an internal simulation relying on internal representation being grounded in embodied experiences.
Erscheinungsjahr
2017
Zeitschriftentitel
Frontiers in Neurorobotics
Band
11
Art.-Nr.
3
ISSN
1662-5218
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2908308

Zitieren

Schilling M, Cruse H. ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems. Frontiers in Neurorobotics. 2017;11: 3.
Schilling, M., & Cruse, H. (2017). ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems. Frontiers in Neurorobotics, 11, 3. doi:10.3389/fnbot.2017.00003
Schilling, Malte, and Cruse, Holk. 2017. “ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems”. Frontiers in Neurorobotics 11: 3.
Schilling, M., and Cruse, H. (2017). ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems. Frontiers in Neurorobotics 11:3.
Schilling, M., & Cruse, H., 2017. ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems. Frontiers in Neurorobotics, 11: 3.
M. Schilling and H. Cruse, “ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems”, Frontiers in Neurorobotics, vol. 11, 2017, : 3.
Schilling, M., Cruse, H.: ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems. Frontiers in Neurorobotics. 11, : 3 (2017).
Schilling, Malte, and Cruse, Holk. “ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems”. Frontiers in Neurorobotics 11 (2017): 3.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:43Z
MD5 Prüfsumme
bdc499aa14a843801395db3198067734


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
Aoi S, Manoonpong P, Ambe Y, Matsuno F, Wörgötter F., Front Neurorobot 11(), 2017
PMID: 28878645

56 References

Daten bereitgestellt von Europe PubMed Central.

Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.
Morasso P, Casadio M, Mohan V, Rea F, Zenzeri J., Front Hum Neurosci 9(), 2015
PMID: 25741274
The Brain's concepts: the role of the Sensory-motor system in conceptual knowledge.
Gallese V, Lakoff G., Cogn Neuropsychol 22(3), 2005
PMID: 21038261
Artificial intelligence. Autonomous mental development by robots and animals.
Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, Thelen E., Science 291(5504), 2001
PMID: 11229402
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Body schema and body image--pros and cons.
de Vignemont F., Neuropsychologia 48(3), 2009
PMID: 19786038
Building a motor simulation de novo: observation of dance by dancers.
Cross ES, Hamilton AF, Grafton ST., Neuroimage 31(3), 2006
PMID: 16530429
Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study.
Buccino G, Riggio L, Melli G, Binkofski F, Gallese V, Rizzolatti G., Brain Res Cogn Brain Res 24(3), 2005
PMID: 16099349
Multiple paired forward and inverse models for motor control.
Wolpert DM, Kawato M., Neural Netw 11(7-8), 1998
PMID: 12662752
Kinematic networks. A distributed model for representing and regularizing motor redundancy.
Mussa Ivaldi FA, Morasso P, Zaccaria R., Biol Cybern 60(1), 1988
PMID: 3214648
Vicarious trial and error.
Redish AD., Nat. Rev. Neurosci. 17(3), 2016
PMID: 26891625
Self-organization, embodiment, and biologically inspired robotics.
Pfeifer R, Lungarella M, Iida F., Science 318(5853), 2007
PMID: 18006736
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
Stick insect locomotion in a complex environment: climbing over large gaps.
Blaesing B, Cruse H., J. Exp. Biol. 207(Pt 8), 2004
PMID: 15010478
Robots that can adapt like animals.
Cully A, Clune J, Tarapore D, Mouret JB., Nature 521(7553), 2015
PMID: 26017452
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Experimental and theoretical approaches to conscious processing.
Dehaene S, Changeux JP., Neuron 70(2), 2011
PMID: 21521609
Resilient machines through continuous self-modeling.
Bongard J, Zykov V, Lipson H., Science 314(5802), 2006
PMID: 17110570
Grounded cognition.
Barsalou LW., Annu Rev Psychol 59(), 2008
PMID: 17705682
Intelligence with representation.
Steels L., Philos Trans A Math Phys Eng Sci 361(1811), 2003
PMID: 14599324
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Huffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682
Conscious thought as simulation of behaviour and perception.
Hesslow G., Trends Cogn. Sci. (Regul. Ed.) 6(6), 2002
PMID: 12039605
Where's the action? The pragmatic turn in cognitive science.
Engel AK, Maye A, Kurthen M, Konig P., Trends Cogn. Sci. (Regul. Ed.) 17(5), 2013
PMID: 23608361
Types of body representation and the sense of embodiment.
Carruthers G., Conscious Cogn 17(4), 2008
PMID: 18359642
The mirror neuron system and its function in humans.
Rizzolatti G., Anat. Embryol. 210(5-6), 2005
PMID: 16222545
Computational Grounded Cognition: a new alliance between grounded cognition and computational modeling.
Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ., Front Psychol 3(), 2012
PMID: 23346065
Recognizing people from their movement.
Loula F, Prasad S, Harber K, Shiffrar M., J Exp Psychol Hum Percept Perform 31(1), 2005
PMID: 15709874
Premotor cortex and the recognition of motor actions.
Rizzolatti G, Fadiga L, Gallese V, Fogassi L., Brain Res Cogn Brain Res 3(2), 1996
PMID: 8713554
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod Struct Dev 33(3), 2004
PMID: 18089037
On the other hand: dummy hands and peripersonal space.
Makin TR, Holmes NP, Ehrsson HH., Behav. Brain Res. 191(1), 2008
PMID: 18423906
Embodied meaning in a neural theory of language.
Feldman J, Narayanan S., Brain Lang 89(2), 2004
PMID: 15068922
Perception through visuomotor anticipation in a mobile robot.
Hoffmann H., Neural Netw 20(1), 2006
PMID: 17010571
Motor prediction.
Wolpert DM, Flanagan JR., Curr. Biol. 11(18), 2001
PMID: 11566114
Mental motor imagery: a window into the representational stages of action.
Jeannerod M, Decety J., Curr. Opin. Neurobiol. 5(6), 1995
PMID: 8805419
Neural reuse: a fundamental organizational principle of the brain.
Anderson ML., Behav Brain Sci 33(4), 2010
PMID: 20964882
Comprehension of cause-effect relations in a tool-using task by chimpanzees (Pan troglodytes).
Limongelli L, Boysen ST, Visalberghi E., J Comp Psychol 109(1), 1995
PMID: 7705056
Environmentally mediated synergy between perception and behaviour in mobile robots.
Verschure PF, Voegtlin T, Douglas RJ., Nature 425(6958), 2003
PMID: 14534588
Brain mechanisms linking language and action.
Pulvermuller F., Nat. Rev. Neurosci. 6(7), 2005
PMID: 15959465
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28194106
PubMed | Europe PMC

Suchen in

Google Scholar