Computational neurorehabilitation: modeling plasticity and learning to predict recovery

Reinkensmeyer DJ, Burdet E, Casadio M, Krakauer JW, Kwakkel G, Lang CE, Swinnen SP, Ward NS, Schweighofer N (2016)
Journal of NeuroEngineering and Rehabilitation 13(1): 42.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Reinkensmeyer, David J.; Burdet, Etienne; Casadio, Maura; Krakauer, John W.; Kwakkel, Gert; Lang, Catherine E.; Swinnen, Stephan P.; Ward, Nick S.; Schweighofer, Nicolas
Journal of NeuroEngineering and Rehabilitation
Page URI


Reinkensmeyer DJ, Burdet E, Casadio M, et al. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation. 2016;13(1): 42.
Reinkensmeyer, D. J., Burdet, E., Casadio, M., Krakauer, J. W., Kwakkel, G., Lang, C. E., Swinnen, S. P., et al. (2016). Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation, 13(1), 42. doi:10.1186/s12984-016-0148-3
Reinkensmeyer, David J., Burdet, Etienne, Casadio, Maura, Krakauer, John W., Kwakkel, Gert, Lang, Catherine E., Swinnen, Stephan P., Ward, Nick S., and Schweighofer, Nicolas. 2016. “Computational neurorehabilitation: modeling plasticity and learning to predict recovery”. Journal of NeuroEngineering and Rehabilitation 13 (1): 42.
Reinkensmeyer, D. J., Burdet, E., Casadio, M., Krakauer, J. W., Kwakkel, G., Lang, C. E., Swinnen, S. P., Ward, N. S., and Schweighofer, N. (2016). Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation 13:42.
Reinkensmeyer, D.J., et al., 2016. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation, 13(1): 42.
D.J. Reinkensmeyer, et al., “Computational neurorehabilitation: modeling plasticity and learning to predict recovery”, Journal of NeuroEngineering and Rehabilitation, vol. 13, 2016, : 42.
Reinkensmeyer, D.J., Burdet, E., Casadio, M., Krakauer, J.W., Kwakkel, G., Lang, C.E., Swinnen, S.P., Ward, N.S., Schweighofer, N.: Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation. 13, : 42 (2016).
Reinkensmeyer, David J., Burdet, Etienne, Casadio, Maura, Krakauer, John W., Kwakkel, Gert, Lang, Catherine E., Swinnen, Stephan P., Ward, Nick S., and Schweighofer, Nicolas. “Computational neurorehabilitation: modeling plasticity and learning to predict recovery”. Journal of NeuroEngineering and Rehabilitation 13.1 (2016): 42.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A survey of human shoulder functional kinematic representations.
Krishnan R, Björsell N, Gutierrez-Farewik EM, Smith C., Med Biol Eng Comput 57(2), 2019
PMID: 30367391
Finding the Intersection of Neuroplasticity, Stroke Recovery, and Learning: Scope and Contributions to Stroke Rehabilitation.
Carey L, Walsh A, Adikari A, Goodin P, Alahakoon D, De Silva D, Ong KL, Nilsson M, Boyd L., Neural Plast 2019(), 2019
PMID: 31191637
Moving stroke rehabilitation forward: The need to change research.
Winters C, Kwakkel G, van Wegen EEH, Nijland RHM, Veerbeek JM, Meskers CGM., NeuroRehabilitation 43(1), 2018
PMID: 30056434
White matter microstructural organisation of interhemispheric pathways predicts different stages of bimanual coordination learning in young and older adults.
Zivari Adab H, Chalavi S, Beets IAM, Gooijers J, Leunissen I, Cheval B, Collier Q, Sijbers J, Jeurissen B, Swinnen SP, Boisgontier MP., Eur J Neurosci 47(5), 2018
PMID: 29363832
Interpreting and Utilising Intersubject Variability in Brain Function.
Seghier ML, Price CJ., Trends Cogn Sci 22(6), 2018
PMID: 29609894
Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond.
Semprini M, Laffranchi M, Sanguineti V, Avanzino L, De Icco R, De Michieli L, Chiappalone M., Front Neurol 9(), 2018
PMID: 29686644
A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.
Charalambous CC, Alcantara CC, French MA, Li X, Matt KS, Kim HE, Morton SM, Reisman DS., J Physiol 596(10), 2018
PMID: 29569729
An Orthopaedic Robotic-Assisted Rehabilitation Method of the Forearm in Virtual Reality Physiotherapy.
Padilla-Castañeda MA, Sotgiu E, Barsotti M, Frisoli A, Orsini P, Martiradonna A, Laddaga C, Bergamasco M., J Healthc Eng 2018(), 2018
PMID: 30154992
Dissociating motor learning from recovery in exoskeleton training post-stroke.
Schweighofer N, Wang C, Mottet D, Laffont I, Bakhti K, Reinkensmeyer DJ, Rémy-Néris O., J Neuroeng Rehabil 15(1), 2018
PMID: 30290806
Two hands, one brain, and aging.
Maes C, Gooijers J, Orban de Xivry JJ, Swinnen SP, Boisgontier MP., Neurosci Biobehav Rev 75(), 2017
PMID: 28188888
Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity.
Bassett DS, Khambhati AN, Grafton ST., Annu Rev Biomed Eng 19(), 2017
PMID: 28375650
Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
Pila O, Duret C, Laborne FX, Gracies JM, Bayle N, Hutin E., J Neuroeng Rehabil 14(1), 2017
PMID: 29029633
Combining robotic training and inactivation of the healthy hemisphere restores pre-stroke motor patterns in mice.
Spalletti C, Alia C, Lai S, Panarese A, Conti S, Micera S, Caleo M., Elife 6(), 2017
PMID: 29280732
Editorial: Neural and Computational Modeling of Movement Control.
Lan N, Cheung VC, Gandevia SC., Front Comput Neurosci 10(), 2016
PMID: 27630557

219 References

Daten bereitgestellt von Europe PubMed Central.

Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010.
Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C; Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group, Anderson L, Barker-Collo S, Bennett D, Connor M, Ezzati M, Feigin VL, Forouzanfar M, Krishnamurthi R, Lawes C, Mensah G, Moran AE, O'Donnell M, Pandian JD, Parag V, Sacco R, Shinohara Y, Truelsen T, Venketasubramanian N, Witt E, Wang W., Lancet 383(9913), 2014
PMID: 24449944
Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association.
Miller EL, Murray L, Richards L, Zorowitz RD, Bakas T, Clark P, Billinger SA; American Heart Association Council on Cardiovascular Nursing and the Stroke Council., Stroke 41(10), 2010
PMID: 20813995
Stroke rehabilitation.
Langhorne P, Bernhardt J, Kwakkel G., Lancet 377(9778), 2011
PMID: 21571152
What do motor "recovery" and "compensation" mean in patients following stroke?
Levin MF, Kleim JA, Wolf SL., Neurorehabil Neural Repair 23(4), 2008
PMID: 19118128
Motor recovery after stroke: a systematic review.
Langhorne P, Coupar F, Pollock A., Lancet Neurol 8(8), 2009
PMID: 19608100
Understanding upper limb recovery after stroke.
Buma F, Kwakkel G, Ramsey N., Restor. Neurol. Neurosci. 31(6), 2013
PMID: 23963341
Understanding adaptive motor control of the paretic upper limb early poststroke: the EXPLICIT-stroke program.
van Kordelaar J, van Wegen EE, Nijland RH, Daffertshofer A, Kwakkel G., Neurorehabil Neural Repair 27(9), 2013
PMID: 23884015
Robotic therapy for chronic stroke: general recovery of impairment or improved task-specific skill?
Kitago T, Goldsmith J, Harran M, Kane L, Berard J, Huang S, Ryan SL, Mazzoni P, Krakauer JW, Huang VS., J. Neurophysiol. 114(3), 2015
PMID: 26180120
Getting neurorehabilitation right: what can be learned from animal models?
Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF., Neurorehabil Neural Repair 26(8), 2012
PMID: 22466792
A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.
Milot MH, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, Bobrow JE, Cramer SC, Reinkensmeyer DJ., J Neuroeng Rehabil 10(), 2013
PMID: 24354476

Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking.
Clark DJ, Neptune RR, Behrman AL, Kautz SA., Arch Phys Med Rehabil 97(3), 2015
PMID: 26525528
Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection.
Jones TA, Adkins DL., Physiology (Bethesda) 30(5), 2015
PMID: 26328881

Fluoxetine Maintains a State of Heightened Responsiveness to Motor Training Early After Stroke in a Mouse Model.
Ng KL, Gibson EM, Hubbard R, Yang J, Caffo B, O'Brien RJ, Krakauer JW, Zeiler SR., Stroke 46(10), 2015
PMID: 26294676
An enriched environment improves sensorimotor function post-ischemic stroke.
Janssen H, Bernhardt J, Collier JM, Sena ES, McElduff P, Attia J, Pollack M, Howells DW, Nilsson M, Calford MB, Spratt NJ., Neurorehabil Neural Repair 24(9), 2010
PMID: 20834046
Aerobic, Resistance, and Cognitive Exercise Training Poststroke.
Tiozzo E, Youbi M, Dave K, Perez-Pinzon M, Rundek T, Sacco RL, Loewenstein D, Lewis JE, Wright CB., Stroke 46(7), 2015
PMID: 26012638
Early prediction of outcome of activities of daily living after stroke: a systematic review.
Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW., Stroke 42(5), 2011
PMID: 21474812
Predicting activities after stroke: what is clinically relevant?
Kwakkel G, Kollen BJ., Int J Stroke 8(1), 2013
PMID: 23280266
A computational model of acute focal cortical lesions.
Goodall S, Reggia JA, Chen Y, Ruppin E, Whitney C., Stroke 28(1), 1997
PMID: 8996497
Interhemispheric effects on map organization following simulated cortical lesions.
Levitan S, Reggia JA., Artif Intell Med 17(1), 1999
PMID: 10501348
Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level.
Casadio M, Tamagnone I, Summa S, Sanguineti V., Front Comput Neurosci 7(), 2013
PMID: 23986688
Effects of augmented exercise therapy time after stroke: a meta-analysis.
Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P., Stroke 35(11), 2004
PMID: 15472114
Physiotherapy after stroke: more is better?
Langhorne P, Wagenaar R, Partridge C., Physiother Res Int 1(2), 1996
PMID: 9238725
What is the evidence for physical therapy poststroke? A systematic review and meta-analysis.
Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G., PLoS ONE 9(2), 2014
PMID: 24505342
The applicability of motor learning to neurorehabilitation
Krakauer JW., 2015
Optimizing oncology therapeutics through quantitative translational and clinical pharmacology: challenges and opportunities.
Venkatakrishnan K, Friberg LE, Ouellet D, Mettetal JT, Stein A, Troconiz IF, Bruno R, Mehrotra N, Gobburu J, Mould DR., Clin. Pharmacol. Ther. 97(1), 2014
PMID: 25670382
Best practice for arm recovery post stroke: an international application.
Wolf SL, Kwakkel G, Bayley M, McDonnell MN; Upper Extremity Stroke Algorithm Working Group., Physiotherapy 102(1), 2015
PMID: 26573327
Brain-machine interface in chronic stroke rehabilitation: a controlled study.
Ramos-Murguialday A, Broetz D, Rea M, Laer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N., Ann. Neurol. 74(1), 2013
PMID: 23494615

Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis.
Waddell KJ, Birkenmeier RL, Moore JL, Hornby TG, Lang CE., Am J Occup Ther 68(4), 2014
PMID: 25005508

Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial.
Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, Kiper P, Cagnin A, Piron L., J Neuroeng Rehabil 10(), 2013
PMID: 23914733
Virtual reality using games for improving physical functioning in older adults: a systematic review.
Molina KI, Ricci NA, de Moraes SA, Perracini MR., J Neuroeng Rehabil 11(), 2014
PMID: 25399408
Exergaming for balance training of elderly: state of the art and future developments.
van Diest M, Lamoth CJ, Stegenga J, Verkerke GJ, Postema K., J Neuroeng Rehabil 10(), 2013
PMID: 24063521
Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review.
Kwakkel G, Kollen BJ, Krebs HI., Neurorehabil Neural Repair 22(2), 2007
PMID: 17876068
Robot-assisted rehabilitation of hand function.
Balasubramanian S, Klein J, Burdet E., Curr. Opin. Neurol. 23(6), 2010
PMID: 20852421
A survey on robotic devices for upper limb rehabilitation.
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S., J Neuroeng Rehabil 11(), 2014
PMID: 24401110
Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review.
Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, Amirabdollahian F., J Neuroeng Rehabil 11(), 2014
PMID: 25012864

Biofeedback in rehabilitation.
Giggins OM, Persson UM, Caulfield B., J Neuroeng Rehabil 10(), 2013
PMID: 23777436
Learning, retention, and slacking: a model of the dynamics of recovery in robot therapy.
Casadio M, Sanguineti V., IEEE Trans Neural Syst Rehabil Eng 20(3), 2012
PMID: 22531822
Do Robotic and Non-Robotic Arm Movement Training Drive Motor Recovery after Stroke by a Common Neural Mechanism? Experimental Evidence and a Computational Model
Reinkensmeyer DJ, Maier MA, Guigon E, Chan V, Akoner OM, Wolbrecht ET, Cramer SC, Bobrow JE., 2009
Trainer variability during step training after spinal cord injury: Implications for robotic gait-training device design.
Galvez JA, Budovitch A, Harkema SJ, Reinkensmeyer DJ., J Rehabil Res Dev 48(2), 2011
PMID: 21480089
Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements.
Formaggio E, Storti SF, Boscolo Galazzo I, Gandolfi M, Geroin C, Smania N, Spezia L, Waldner A, Fiaschi A, Manganotti P., J Neuroeng Rehabil 10(), 2013
PMID: 23442349
Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study.
Zimmermann R, Marchal-Crespo L, Edelmann J, Lambercy O, Fluet MC, Riener R, Wolf M, Gassert R., J Neuroeng Rehabil 10(), 2013
PMID: 23336819
A review of wearable sensors and systems with application in rehabilitation.
Patel S, Park H, Bonato P, Chan L, Rodgers M., J Neuroeng Rehabil 9(), 2012
PMID: 22520559
High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors.
Ouellette MM, LeBrasseur NK, Bean JF, Phillips E, Stein J, Frontera WR, Fielding RA., Stroke 35(6), 2004
PMID: 15105515
Upper extremity use in people with hemiparesis in the first few weeks after stroke.
Lang CE, Wagner JM, Edwards DF, Dromerick AW., J Neurol Phys Ther 31(2), 2007
PMID: 17558358
Real-world affected upper limb activity in chronic stroke: an examination of potential modifying factors.
Bailey RR, Birkenmeier RL, Lang CE., Top Stroke Rehabil 22(1), 2015
PMID: 25776118
Predicting daily use of the affected upper extremity 1 year after stroke.
Rand D, Eng JJ., J Stroke Cerebrovasc Dis 24(2), 2014
PMID: 25533758
Assessment of arm activity using triaxial accelerometry in patients with a stroke.
van der Pas SC, Verbunt JA, Breukelaar DE, van Woerden R, Seelen HA., Arch Phys Med Rehabil 92(9), 2011
PMID: 21878214
Quantifying Real-World Upper-Limb Activity in Nondisabled Adults and Adults With Chronic Stroke.
Bailey RR, Klaesner JW, Lang CE., Neurorehabil Neural Repair 29(10), 2015
PMID: 25896988
Assessment of hand kinematics using inertial and magnetic sensors.
Kortier HG, Sluiter VI, Roetenberg D, Veltink PH., J Neuroeng Rehabil 11(), 2014
PMID: 24746123

Motor learning: its relevance to stroke recovery and neurorehabilitation.
Krakauer JW., Curr. Opin. Neurol. 19(1), 2006
PMID: 16415682
Motor learning principles for neurorehabilitation.
Kitago T, Krakauer JW., Handb Clin Neurol 110(), 2013
PMID: 23312633
Robotic neurorehabilitation: a computational motor learning perspective.
Huang VS, Krakauer JW., J Neuroeng Rehabil 6(), 2009
PMID: 19243614
Plasticity during stroke recovery: from synapse to behaviour.
Murphy TH, Corbett D., Nat. Rev. Neurosci. 10(12), 2009
PMID: 19888284
Measurement of motor recovery after stroke. Outcome assessment and sample size requirements.
Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J., Stroke 23(8), 1992
PMID: 1636182
Map plasticity in somatosensory cortex.
Feldman DE, Brecht M., Science 310(5749), 2005
PMID: 16272113
Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke.
Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST., Nature 468(7321), 2010
PMID: 21048709
Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis.
Schiene K, Bruehl C, Zilles K, Qu M, Hagemann G, Kraemer M, Witte OW., J. Cereb. Blood Flow Metab. 16(5), 1996
PMID: 8784234
Motor cortex disinhibition in acute stroke.
Liepert J, Storch P, Fritsch A, Weiller C., Clin Neurophysiol 111(4), 2000
PMID: 10727918
Lesion-induced network plasticity in remote brain areas.
Witte OW, Buchkremer-Ratzmann I, Schiene K, Neumann-Haefelin T, Hagemann G, Kraemer M, Zilles K, Freund HJ., Trends Neurosci. 20(8), 1997
PMID: 9246727
Meta-analysis of the efficacy of different training strategies in animal models of ischemic stroke.
Schmidt A, Wellmann J, Schilling M, Strecker JK, Sommer C, Schabitz WR, Diederich K, Minnerup J., Stroke 45(1), 2013
PMID: 24178915
Recovery recapitulates ontogeny.
Cramer SC, Chopp M., Trends Neurosci. 23(6), 2000
PMID: 10838596
An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke.
Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH, Carmichael ST., Nat. Neurosci. 13(12), 2010
PMID: 21057507
Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct.
Nudo RJ, Wise BM, SiFuentes F, Milliken GW., Science 272(5269), 1996
PMID: 8650578
The interaction between training and plasticity in the poststroke brain.
Zeiler SR, Krakauer JW., Curr. Opin. Neurol. 26(6), 2013
PMID: 24136129
Recovery after damage to motor cortical areas.
Nudo RJ., Curr. Opin. Neurobiol. 9(6), 1999
PMID: 10607636
Computer models of stroke recovery: implications for neurorehabilitation
Lytton WW, Stark JM, Yamasaki DS, Sober SJ., 1999
Receptive field changes after strokelike cortical ablation: a role for activation dynamics.
Sober SJ, Stark JM, Yamasaki DS, Lytton WW., J. Neurophysiol. 78(6), 1997
PMID: 9405557
Modeling the impact of lesions in the human brain.
Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O., PLoS Comput. Biol. 5(6), 2009
PMID: 19521503
Dynamical consequences of lesions in cortical networks.
Honey CJ, Sporns O., Hum Brain Mapp 29(7), 2008
PMID: 18438885
Simulation of neuronal death and network recovery in a computational model of distributed cortical activity.
Rubinov M, McIntosh AR, Valenzuela MJ, Breakspear M., Am J Geriatr Psychiatry 17(3), 2009
PMID: 19001355
Principles of sensorimotor learning.
Wolpert DM, Diedrichsen J, Flanagan JR., Nat. Rev. Neurosci. 12(12), 2011
PMID: 22033537
Learning-induced LTP in neocortex.
Rioult-Pedotti MS, Friedman D, Donoghue JP., Science 290(5491), 2000
PMID: 11039938
Cerebellar aminergic neuromodulation: towards a functional understanding.
Schweighofer N, Doya K, Kuroda S., Brain Res. Brain Res. Rev. 44(2-3), 2004
PMID: 15003388
Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.
Kawato M, Kuroda S, Schweighofer N., Curr. Opin. Neurobiol. 21(5), 2011
PMID: 21665461
Predictive reward signal of dopamine neurons.
Schultz W., J. Neurophysiol. 80(1), 1998
PMID: 9658025
Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core.
Kelley AE, Smith-Roe SL, Holahan MR., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342382

Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design.
Abdollahi F, Case Lazarro ED, Listenberger M, Kenyon RV, Kovic M, Bogey RA, Hedeker D, Jovanovic BD, Patton JL., Neurorehabil Neural Repair 28(2), 2013
PMID: 23929692
Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke.
Reisman DS, Wityk R, Silver K, Bastian AJ., Brain 130(Pt 7), 2007
PMID: 17405765
Hemiparetic stroke impairs anticipatory control of arm movement.
Takahashi CD, Reinkensmeyer DJ., Exp Brain Res 149(2), 2003
PMID: 12610680
Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis.
Patton JL, Kovic M, Mussa-Ivaldi FA., J Rehabil Res Dev 43(5), 2006
PMID: 17123205
Effect of muscle fatigue on internal model formation and retention during reaching with the arm.
Takahashi CD, Nemet D, Rose-Gottron CM, Larson JK, Cooper DM, Reinkensmeyer DJ., J. Appl. Physiol. 100(2), 2005
PMID: 16254073
Motor adaptation as a greedy optimization of error and effort.
Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ., J. Neurophysiol. 97(6), 2007
PMID: 17392418
CNS learns stable, accurate, and efficient movements using a simple algorithm.
Franklin DW, Burdet E, Tee KP, Osu R, Chew CM, Milner TE, Kawato M., J. Neurosci. 28(44), 2008
PMID: 18971459
Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
Franklin DW, Osu R, Burdet E, Kawato M, Milner TE., J. Neurophysiol. 90(5), 2003
PMID: 14615432
A model of reward- and effort-based optimal decision making and motor control.
Rigoux L, Guigon E., PLoS Comput. Biol. 8(10), 2012
PMID: 23055916
Interacting adaptive processes with different timescales underlie short-term motor learning.
Smith MA, Ghazizadeh A, Shadmehr R., PLoS Biol. 4(6), 2006
PMID: 16700627
The dynamics of memory as a consequence of optimal adaptation to a changing body.
Kording KP, Tenenbaum JB, Shadmehr R., Nat. Neurosci. 10(6), 2007
PMID: 17496891
The neurobiology of learning and memory: some reminders to remember.
Cahill L, McGaugh JL, Weinberger NM., Trends Neurosci. 24(10), 2001
PMID: 11576671
Dual adaptation supports a parallel architecture of motor memory.
Lee JY, Schweighofer N., J. Neurosci. 29(33), 2009
PMID: 19692614
Explaining savings for visuomotor adaptation: linear time-invariant state-space models are not sufficient.
Zarahn E, Weston GD, Liang J, Mazzoni P, Krakauer JW., J. Neurophysiol. 100(5), 2008
PMID: 18596178

Dual-process decomposition in human sensorimotor adaptation.
Huberdeau DM, Krakauer JW, Haith AM., Curr. Opin. Neurobiol. 33(), 2015
PMID: 25827272
Overcoming motor "forgetting" through reinforcement of learned actions.
Shmuelof L, Huang VS, Haith AM, Delnicki RJ, Mazzoni P, Krakauer JW., J. Neurosci. 32(42), 2012
PMID: 23077047
The dissociable effects of punishment and reward on motor learning.
Galea JM, Mallia E, Rothwell J, Diedrichsen J., Nat. Neurosci. 18(4), 2015
PMID: 25706473
Mechanisms of the contextual interference effect in individuals poststroke.
Schweighofer N, Lee JY, Goh HT, Choi Y, Kim SS, Stewart JC, Lewthwaite R, Winstein CJ., J. Neurophysiol. 106(5), 2011
PMID: 21832031
Reach adaptation and final position control amid environmental uncertainty after stroke.
Scheidt RA, Stoeckmann T., J. Neurophysiol. 97(4), 2007
PMID: 17267755
Effects of robotically modulating kinematic variability on motor skill learning and motivation.
Duarte JE, Reinkensmeyer DJ., J. Neurophysiol. 113(7), 2015
PMID: 25673732

Sutton RS, Barto AG., 1998
Learning from sensory and reward prediction errors during motor adaptation.
Izawa J, Shadmehr R., PLoS Comput. Biol. 7(3), 2011
PMID: 21423711
Knowledge of results and motor learning: a review and critical reappraisal.
Salmoni AW, Schmidt RA, Walter CB., Psychol Bull 95(3), 1984
PMID: 6399752
Motor memory and local minimization of error and effort, not global optimization, determine motor behavior.
Ganesh G, Haruno M, Kawato M, Burdet E., J. Neurophysiol. 104(1), 2010
PMID: 20484533
Muscle coordination is habitual rather than optimal.
de Rugy A, Loeb GE, Carroll TJ., J. Neurosci. 32(21), 2012
PMID: 22623684
The cost of moving optimally: kinematic path selection.
Kistemaker DA, Wong JD, Gribble PL., J. Neurophysiol. 112(8), 2014
PMID: 24944215
The central nervous system does not minimize energy cost in arm movements.
Kistemaker DA, Wong JD, Gribble PL., J. Neurophysiol. 104(6), 2010
PMID: 20884757

Motor learning by field approximation.
Gandolfo F, Mussa-Ivaldi FA, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 93(9), 1996
PMID: 8632977
Adaptive representation of dynamics during learning of a motor task.
Shadmehr R, Mussa-Ivaldi FA., J. Neurosci. 14(5 Pt 2), 1994
PMID: 8182467
Repetitive task training for improving functional ability after stroke.
French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, Langhorne P, Price CI, Walker A, Watkins CL., Cochrane Database Syst Rev (4), 2007
PMID: 17943883
A schema theory of discrete motor skill learning
Schmidt RA., 1975
Consolidation in human motor memory.
Brashers-Krug T, Shadmehr R, Bizzi E., Nature 382(6588), 1996
PMID: 8717039
Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury.
Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, Albisser U, Willms R, Townson A, Curt A, Popovic MR, Steeves JD., IEEE Trans Neural Syst Rehabil Eng 20(3), 2011
PMID: 22203726
Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): A single-center RCT.
Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, Powers WJ, Wolf SL, Edwards DF., Neurology 73(3), 2009
PMID: 19458319
Upper extremity muscle activation during recovery of reaching in subjects with post-stroke hemiparesis.
Wagner JM, Dromerick AW, Sahrmann SA, Lang CE., Clin Neurophysiol 118(1), 2006
PMID: 17097340
Deficits in grasp versus reach during acute hemiparesis.
Lang CE, Wagner JM, Bastian AJ, Hu Q, Edwards DF, Sahrmann SA, Dromerick AW., Exp Brain Res 166(1), 2005
PMID: 16021431
Recovery of thumb and finger extension and its relation to grasp performance after stroke.
Lang CE, DeJong SL, Beebe JA., J. Neurophysiol. 102(1), 2009
PMID: 19458140
Muscle synergy patterns as physiological markers of motor cortical damage.
Cheung VC, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E., Proc. Natl. Acad. Sci. U.S.A. 109(36), 2012
PMID: 22908288
Quantifying loss of independent joint control in acute stroke with a robotic evaluation of reaching workspace.
Ellis MD, Kottink AI, Prange GB, Rietman JS, Buurke JH, Dewald JP., Conf Proc IEEE Eng Med Biol Soc 2011(), 2011
PMID: 22256253
Impact of time on quality of motor control of the paretic upper limb after stroke.
van Kordelaar J, van Wegen E, Kwakkel G., Arch Phys Med Rehabil 95(2), 2013
PMID: 24161273
Motor compensation and recovery for reaching in stroke patients.
Roby-Brami A, Feydy A, Combeaud M, Biryukova EV, Bussel B, Levin MF., Acta Neurol. Scand. 107(5), 2003
PMID: 12713530
Person-specific changes in motor performance accompany upper extremity functional gains after stroke.
DeJong SL, Birkenmeier RL, Lang CE., J Appl Biomech 28(3), 2011
PMID: 21975170
Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors.
Del Din S, Patel S, Cobelli C, Bonato P., Conf Proc IEEE Eng Med Biol Soc 2011(), 2011
PMID: 22255667
Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training.
Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, Reinkensmeyer DJ., J Neuroeng Rehabil 11(), 2014
PMID: 24885076
Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery.
Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, Yang E, Byttebier G, Dipietro L, Rykman A, McArthur K, Hajjar K, Lees KR, Volpe BT., Stroke 45(1), 2013
PMID: 24335224
The contribution of kinematics in the assessment of upper limb motor recovery early after stroke.
van Dokkum L, Hauret I, Mottet D, Froger J, Metrot J, Laffont I., Neurorehabil Neural Repair 28(1), 2013
PMID: 23911973
Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial.
Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT., J. Neurol. Neurosurg. Psychiatry 55(7), 1992
PMID: 1640226
The hemiplegic arm after stroke: measurement and recovery.
Wade DT, Langton-Hewer R, Wood VA, Skilbeck CE, Ismail HM., J. Neurol. Neurosurg. Psychiatry 46(6), 1983
PMID: 6875585
Prediction of recovery of motor function after stroke.
Stinear C., Lancet Neurol 9(12), 2010
PMID: 21035399
Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study.
Nijland RH, van Wegen EE, Harmeling-van der Wel BC, Kwakkel G; EPOS Investigators, Kwakkel G, Harmeling-van der Wel BC, Veerbeek JM, Nijland RH, van Wegen EE, van der Beek MA, Cornelissen WA, Goos AA, Steeg CS, Timmermans JM, Tichelaar R., Stroke 41(4), 2010
PMID: 20167916
The PREP algorithm predicts potential for upper limb recovery after stroke.
Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD., Brain 135(Pt 8), 2012
PMID: 22689909
Predictive value of the NIHSS for ADL outcome after ischemic hemispheric stroke: does timing of early assessment matter?
Kwakkel G, Veerbeek JM, van Wegen EE, Nijland R, Harmeling-van der Wel BC, Dippel DW; EPOS investigators, Kwakkel G, Harmeling-van der Wel BC, Dippel DW, Veerbeek JM, Nijland R, van Wegen EE, van der Beek MA, Cornelissen WA, Goos AA, Steeg CS, Tichelaar R, Timmermans JM., J. Neurol. Sci. 294(1-2), 2010
PMID: 20439108
Diagnostic accuracy of the Barthel Index for measuring activities of daily living outcome after ischemic hemispheric stroke: does early poststroke timing of assessment matter?
Kwakkel G, Veerbeek JM, Harmeling-van der Wel BC, van Wegen E, Kollen BJ; Early Prediction of functional Outcome after Stroke (EPOS) Investigators, Kwakkel G, Harmeling-van der Wel BC, Veerbeek JM, Nijland R, van de Beek MA, Cornelissen WA, Goos AA, Steeg C, Tichelaar R, Timmermans JM., Stroke 42(2), 2010
PMID: 21183748
Inter-individual variability in the capacity for motor recovery after ischemic stroke.
Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, Marshall RS, Krakauer JW., Neurorehabil Neural Repair 22(1), 2007
PMID: 17687024
Prediction of motor recovery using initial impairment and fMRI 48 h poststroke.
Zarahn E, Alon L, Ryan SL, Lazar RM, Vry MS, Weiller C, Marshall RS, Krakauer JW., Cereb. Cortex 21(12), 2011
PMID: 21527788
Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke.
Winters C, van Wegen EE, Daffertshofer A, Kwakkel G., Neurorehabil Neural Repair 29(7), 2014
PMID: 25505223
Impact of time on improvement of outcome after stroke.
Kwakkel G, Kollen B, Twisk J., Stroke 37(9), 2006
PMID: 16931787
Constraint-induced movement therapy after stroke.
Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL., Lancet Neurol 14(2), 2015
PMID: 25772900
Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke.
Radlinska B, Ghinani S, Leppert IR, Minuk J, Pike GB, Thiel A., Neurology 75(12), 2010
PMID: 20855848
Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke.
Puig J, Pedraza S, Blasco G, Daunis-I-Estadella J, Prados F, Remollo S, Prats-Galino A, Soria G, Boada I, Castellanos M, Serena J., AJNR Am J Neuroradiol 32(5), 2011
PMID: 21474629
Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke.
Schulz R, Park CH, Boudrias MH, Gerloff C, Hummel FC, Ward NS., Stroke 43(8), 2012
PMID: 22764214
Assessing a standardised approach to measuring corticospinal integrity after stroke with DTI.
Park CH, Kou N, Boudrias MH, Playford ED, Ward NS., Neuroimage Clin 2(), 2013
PMID: 24179804
Can fully automated detection of corticospinal tract damage be used in stroke patients?
Kou N, Park CH, Seghier ML, Leff AP, Ward NS., Neurology 80(24), 2013
PMID: 23658388
Predicting language outcome and recovery after stroke: the PLORAS system.
Price CJ, Seghier ML, Leff AP., Nat Rev Neurol 6(4), 2010
PMID: 20212513
Predicting outcome and recovery after stroke with lesions extracted from MRI images.
Hope TM, Seghier ML, Leff AP, Price CJ., Neuroimage Clin 2(), 2013
PMID: 24179796
Complex biomarker discovery in neuroimaging data: Finding a needle in a haystack.
Atluri G, Padmanabhan K, Fang G, Steinbach M, Petrella JR, Lim K, Macdonald A 3rd, Samatova NF, Doraiswamy PM, Kumar V., Neuroimage Clin 3(), 2013
PMID: 24179856
Getting lost in translation.
Ward NS., Curr. Opin. Neurol. 21(6), 2008
PMID: 18989102
Early functional magnetic resonance imaging activations predict language outcome after stroke.
Saur D, Ronneberger O, Kummerer D, Mader I, Weiller C, Kloppel S., Brain 133(Pt 4), 2010
PMID: 20299389
Functional potential in chronic stroke patients depends on corticospinal tract integrity.
Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD., Brain 130(Pt 1), 2007
PMID: 17148468
Anatomy of stroke injury predicts gains from therapy.
Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, Cramer SC., Stroke 42(2), 2010
PMID: 21164128

Big news from small world networks after stroke.
Gerloff C, Hallett M., Brain 133(Pt 4), 2010
PMID: 20375131
Dynamic causal modelling.
Friston KJ, Harrison L, Penny W., Neuroimage 19(4), 2003
PMID: 12948688
A dynamic causal model for evoked and induced responses.
Chen CC, Kiebel SJ, Kilner JM, Ward NS, Stephan KE, Wang WJ, Friston KJ., Neuroimage 59(1), 2011
PMID: 21835251
The labile brain. I. Neuronal transients and nonlinear coupling.
Friston KJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355(1394), 2000
PMID: 10724457
The Virtual Brain: Modeling Biological Correlates of Recovery after Chronic Stroke.
Falcon MI, Riley JD, Jirsa V, McIntosh AR, Shereen AD, Chen EE, Solodkin A., Front Neurol 6(), 2015
PMID: 26579071
Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro.
Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217333
Bayesian estimation of synaptic physiology from the spectral responses of neural masses.
Moran RJ, Stephan KE, Kiebel SJ, Rombach N, O'Connor WT, Murphy KJ, Reilly RB, Friston KJ., Neuroimage 42(1), 2008
PMID: 18515149
Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents.
Moran RJ, Jung F, Kumagai T, Endepols H, Graf R, Dolan RJ, Friston KJ, Stephan KE, Tittgemeyer M., PLoS ONE 6(8), 2011
PMID: 21829652

Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke.
Patten C, Condliffe EG, Dairaghi CA, Lum PS., J Neuroeng Rehabil 10(), 2013
PMID: 23336711
Reconsidering the motor recovery plateau in stroke rehabilitation.
Page SJ, Gater DR, Bach-Y-Rita P., Arch Phys Med Rehabil 85(8), 2004
PMID: 15295770
Hand function and motor cortical output poststroke: are they related?
Brouwer BJ, Schryburt-Brown K., Arch Phys Med Rehabil 87(5), 2006
PMID: 16635624
The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke.
Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ, Greenwood RJ, Rothwell JC., Eur. J. Neurosci. 25(6), 2007
PMID: 17432972
Ipsilateral motor dysfunction from unilateral stroke: implications for the functional neuroanatomy of hemiparesis.
Noskin O, Krakauer JW, Lazar RM, Festa JR, Handy C, O'Brien KA, Marshall RS., J. Neurol. Neurosurg. Psychiatry 79(4), 2007
PMID: 17635970
Use it and improve it or lose it: interactions between arm function and use in humans post-stroke.
Hidaka Y, Han CE, Wolf SL, Winstein CJ, Schweighofer N., PLoS Comput. Biol. 8(2), 2012
PMID: 22761551
How to Retrain Movement after Neurologic Injury: A Computational Rationale for Incorporating Robot (or Therapist) Assistance
Reinkensmeyer DJ., 2003
Concurrent adaptation of force and impedance in the redundant muscle system.
Tee KP, Franklin DW, Kawato M, Milner TE, Burdet E., Biol Cybern 102(1), 2009
PMID: 19936778
A framework to describe, analyze and generate interactive motor behaviors.
Jarrasse N, Charalambous T, Burdet E., PLoS ONE 7(11), 2012
PMID: 23226231
A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
Hu XL, Tong KY, Song R, Zheng XJ, Leung WW., Neurorehabil Neural Repair 23(8), 2009
PMID: 19531605
Lifeline. Interview with Christian Grefkes.
Grefkes C., Lancet Neurol 13(2), 2014
PMID: 24605378
Restricted active range of motion at the elbow, forearm, wrist, or fingers decreases hand function.
Bland MD, Beebe JA, Hardwick DD, Lang CE., J Hand Ther 21(3), 2008
PMID: 18652972

Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.
Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, Celnik PA, Krakauer JW., Proc. Natl. Acad. Sci. U.S.A. 106(5), 2009
PMID: 19164589
Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.
Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG., Brain 128(Pt 3), 2005
PMID: 15634731
Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke.
Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE., Am J Phys Med Rehabil 91(11 Suppl 3), 2012
PMID: 23080039


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 27130577
PubMed | Europe PMC

Suchen in

Google Scholar