The duration of reaching movement is longer than predicted by minimum variance

Wang C, Xiao Y, Burdet E, Gordon J, Schweighofer N (2016)
Journal of Neurophysiology 116(5): 2342-2345.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Einrichtung
Erscheinungsjahr
Zeitschriftentitel
Journal of Neurophysiology
Band
116
Ausgabe
5
Seite(n)
2342-2345
PUB-ID

Zitieren

Wang C, Xiao Y, Burdet E, Gordon J, Schweighofer N. The duration of reaching movement is longer than predicted by minimum variance. Journal of Neurophysiology. 2016;116(5):2342-2345.
Wang, C., Xiao, Y., Burdet, E., Gordon, J., & Schweighofer, N. (2016). The duration of reaching movement is longer than predicted by minimum variance. Journal of Neurophysiology, 116(5), 2342-2345. doi:10.1152/jn.00148.2016
Wang, C., Xiao, Y., Burdet, E., Gordon, J., and Schweighofer, N. (2016). The duration of reaching movement is longer than predicted by minimum variance. Journal of Neurophysiology 116, 2342-2345.
Wang, C., et al., 2016. The duration of reaching movement is longer than predicted by minimum variance. Journal of Neurophysiology, 116(5), p 2342-2345.
C. Wang, et al., “The duration of reaching movement is longer than predicted by minimum variance”, Journal of Neurophysiology, vol. 116, 2016, pp. 2342-2345.
Wang, C., Xiao, Y., Burdet, E., Gordon, J., Schweighofer, N.: The duration of reaching movement is longer than predicted by minimum variance. Journal of Neurophysiology. 116, 2342-2345 (2016).
Wang, Chunji, Xiao, Yupeng, Burdet, Etienne, Gordon, James, and Schweighofer, Nicolas. “The duration of reaching movement is longer than predicted by minimum variance”. Journal of Neurophysiology 116.5 (2016): 2342-2345.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Vigor of reaching movements: reward discounts the cost of effort.
Summerside EM, Shadmehr R, Ahmed AA., J Neurophysiol 119(6), 2018
PMID: 29537911
Movement vigor as a traitlike attribute of individuality.
Reppert TR, Rigas I, Herzfeld DJ, Sedaghat-Nejad E, Komogortsev O, Shadmehr R., J Neurophysiol 120(2), 2018
PMID: 29766769
Vigour of self-paced reaching movement: cost of time and individual traits.
Berret B, Castanier C, Bastide S, Deroche T., Sci Rep 8(1), 2018
PMID: 30006639
Control of movement vigor and decision making during foraging.
Yoon T, Geary RB, Ahmed AA, Shadmehr R., Proc Natl Acad Sci U S A 115(44), 2018
PMID: 30322938
Unifying Speed-Accuracy Trade-Off and Cost-Benefit Trade-Off in Human Reaching Movements.
Peternel L, Sigaud O, Babič J., Front Hum Neurosci 11(), 2017
PMID: 29379424

25 References

Daten bereitgestellt von Europe PubMed Central.

The central nervous system stabilizes unstable dynamics by learning optimal impedance.
Burdet E, Osu R, Franklin DW, Milner TE, Kawato M., Nature 414(6862), 2001
PMID: 11719805
The influence of predicted arm biomechanics on decision making.
Cos I, Belanger N, Cisek P., J. Neurophysiol. 105(6), 2011
PMID: 21451055
Noise in the nervous system.
Faisal AA, Selen LP, Wolpert DM., Nat. Rev. Neurosci. 9(4), 2008
PMID: 18319728
Visual feedback is not necessary for the learning of novel dynamics.
Franklin DW, So U, Burdet E, Kawato M., PLoS ONE 2(12), 2007
PMID: 18092002
Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy.
Gordon J, Ghilardi MF, Cooper SE, Ghez C., Exp Brain Res 99(1), 1994
PMID: 7925785
Computational motor control: redundancy and invariance.
Guigon E, Baraduc P, Desmurget M., J. Neurophysiol. 97(1), 2006
PMID: 17005621
Evidence for hyperbolic temporal discounting of reward in control of movements.
Haith AM, Reppert TR, Shadmehr R., J. Neurosci. 32(34), 2012
PMID: 22915115
Signal-dependent noise determines motor planning.
Harris CM, Wolpert DM., Nature 394(6695), 1998
PMID: 9723616
The main sequence of saccades optimizes speed-accuracy trade-off.
Harris CM, Wolpert DM., Biol Cybern 95(1), 2006
PMID: 16555070
A model of duration in normal and perturbed reaching movement
Hoff B., 1994
Reduction of metabolic cost during motor learning of arm reaching dynamics.
Huang HJ, Kram R, Ahmed AA., J. Neurosci. 32(6), 2012
PMID: 22323730
Dissociating variability and effort as determinants of coordination.
O'Sullivan I, Burdet E, Diedrichsen J., PLoS Comput. Biol. 5(4), 2009
PMID: 19360132
Optimal impedance control for task achievement in the presence of signal-dependent noise.
Osu R, Kamimura N, Iwasaki H, Nakano E, Harris CM, Wada Y, Kawato M., J. Neurophysiol. 92(2), 2004
PMID: 15056685
Short-Duration and Intensive Training Improves Long-Term Reaching Performance in Individuals With Chronic Stroke.
Park H, Kim S, Winstein CJ, Gordon J, Schweighofer N., Neurorehabil Neural Repair 30(6), 2015
PMID: 26405046
A model of reward- and effort-based optimal decision making and motor control.
Rigoux L, Guigon E., PLoS Comput. Biol. 8(10), 2012
PMID: 23055916
Effort, success, and nonuse determine arm choice.
Schweighofer N, Xiao Y, Kim S, Yoshioka T, Gordon J, Osu R., J. Neurophysiol. 114(1), 2015
PMID: 25948869
Temporal discounting of reward and the cost of time in motor control.
Shadmehr R, Orban de Xivry JJ, Xu-Wilson M, Shih TY., J. Neurosci. 30(31), 2010
PMID: 20685993
The sources of variability in saccadic eye movements.
van Beers RJ., J. Neurosci. 27(33), 2007
PMID: 17699658
The role of execution noise in movement variability.
van Beers RJ, Haggard P, Wolpert DM., J. Neurophysiol. 91(2), 2003
PMID: 14561687
Accuracy of voluntary movement
Woodworth RS., 1899

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27559137
PubMed | Europe PMC

Suchen in

Google Scholar